Anisotropic Singular Neumann Equations with Unbalanced Growth

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Dušan D. Repovš
机构
[1] National Technical University,Department of Mathematics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
[4] University of Ljubljana,Faculty of Education and Faculty of Mathematics and Physics
[5] Institute of Mathematics,undefined
[6] Physics and Mechanics,undefined
来源
Potential Analysis | 2022年 / 57卷
关键词
Modular function; Truncation; Comparison principle; Minimal solution; Anisotropic regularity; 35J75; 35J60; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear parametric Neumann problem driven by the anisotropic (p, q)-Laplacian and a reaction which exhibits the combined effects of a singular term and of a parametric superlinear perturbation. We are looking for positive solutions. Using a combination of topological and variational tools together with suitable truncation and comparison techniques, we prove a bifurcation-type result describing the set of positive solutions as the positive parameter λ varies. We also show the existence of minimal positive solutions uλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{\lambda }^{*}$\end{document} and determine the monotonicity and continuity properties of the map λ↦uλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \mapsto u_{\lambda }^{*}$\end{document}.
引用
收藏
页码:55 / 82
页数:27
相关论文
共 50 条
  • [1] Anisotropic Singular Neumann Equations with Unbalanced Growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    POTENTIAL ANALYSIS, 2022, 57 (01) : 55 - 82
  • [2] Singular Neumann (p, q)-equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Positivity, 2020, 24 : 1017 - 1040
  • [3] Singular Neumann (p, q)-equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    POSITIVITY, 2020, 24 (04) : 1017 - 1040
  • [5] Anisotropic problems with unbalanced growth
    Alsaedi, Ahmed
    Ahmad, Bashir
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1504 - 1515
  • [6] Singular solutions in nonlinear parabolic equations with anisotropic nonstandard growth conditions
    Liu, Bingchen
    Dong, Mengzhen
    Li, Fengjie
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [7] Strongly singular problems with unbalanced growth
    Pimenta, Marcos T. O.
    Winkert, Patrick
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [8] On a class of singular anisotropic (p, q)-equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 545 - 571
  • [9] BOUNDEDNESS OF SOLUTIONS TO SINGULAR ANISOTROPIC ELLIPTIC EQUATIONS
    Brandolini, Barbara
    Cirstea, Florica C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1545 - 1561
  • [10] On a class of singular anisotropic (p, q)-equations
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Revista Matemática Complutense, 2022, 35 : 545 - 571