GLOBAL MULTIPLICITY FOR PARAMETRIC ANISOTROPIC NEUMANN (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Brno Univ, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[7] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Anisotropic operator; superlinear reaction; positive and nodal solutions; critical groups; KIRCHHOFF-TYPE PROBLEMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SOBOLEV SPACES; EXISTENCE;
D O I
10.12775/TMNA.2022.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Neumann boundary value problem driven by the anisotropic (p, q)-Laplacian plus a parametric potential term. The reaction is "superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. Also, we show the existence of a minimal positive solution and finally, we produce a nodal solution.
引用
收藏
页码:393 / 422
页数:30
相关论文
共 50 条
  • [31] Landesman-Lazer type (p, q)-equations with Neumann condition
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Acta Mathematica Scientia, 2020, 40 : 991 - 1000
  • [32] LANDESMAN-LAZER TYPE(p, q)-EQUATIONS WITH NEUMANN CONDITION
    Nikolaos S.PAPAGEORGIOU
    Calogero VETRO
    Francesca VETRO
    ActaMathematicaScientia, 2020, 40 (04) : 991 - 1000
  • [33] Landesman-Lazer type (p, q)-equations with Neumann condition
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (04) : 991 - 1000
  • [35] A multiplicity theorem for anisotropic Robin equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2022, 33 (01) : 1 - 22
  • [36] MULTIPLICITY RESULTS FOR DISCRETE ANISOTROPIC EQUATIONS
    Galewski, Marek
    Heidarkhani, Shapour
    Salari, Amjad
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01): : 203 - 218
  • [37] GLOBAL MULTIPLICITY RESULTS FOR p(x)-LAPLACIAN EQUATION WITH NONLINEAR NEUMANN BOUNDARY CONDITION
    Sreenadh, K.
    Tiwari, Sweta
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (7-8) : 815 - 836
  • [38] Multiplicity of positive solutions for (p, q)-Laplace equations with two parameters
    Bobkov, Vladimir
    Tanaka, Mieko
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (03)
  • [39] MULTIPLICITY OF CONCENTRATING SOLUTIONS FOR (p, q)-SCHRODINGER EQUATIONS WITH LACK OF COMPACTNESS
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 262 (01) : 399 - 447
  • [40] Abstract multiplicity results for (p, q)-Laplace equations with two parameters
    Bobkov, Vladimir
    Tanaka, Mieko
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2767 - 2794