A Novel Hybrid Model Combining BPNN Neural Network and Ensemble Empirical Mode Decomposition

被引:0
|
作者
Li, Huiling [1 ]
Wang, Qi [1 ]
Wei, Daijun [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Xue Yuan Rd, Enshi 445000, Hubei, Peoples R China
关键词
Time series; Neural network; Ensemble empirical mode decomposition; EEMD-BPNN hybrid model; CRUDE-OIL PRICE; FAULT-DIAGNOSIS; IMPROVED EEMD; TIME-SERIES; EMD; CLASSIFICATION; LSTM;
D O I
10.1007/s44196-024-00446-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network models have been successfully used to predict stock prices, weather, and traffic patterns. Due to the sensitivity of the data, it is very effective in identifying and maintaining long-term dependencies in time series. The back propagation neural network (BPNN) model works well in regression and classification applications, such as predicting stock prices and sales volumes. BPNN needs to sort out the mapping between inputs and outputs before continuous values. BPNN neural network model is integrated with ensemble empirical mode decomposition (EEMD), and a new hybrid neural network prediction model is constructed. Integrating ensemble empirical mode decomposition, collecting and preprocessing sequence features, reducing noise, improving robustness, and then training neural networks with returned feature vectors instead. In the international gold price series forecasting, the R 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of the new hybrid model is 1.85 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the existing EEMD-LSTM model, 3.8 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.44 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the independent BPNN and long short-term memory network (LSTM) neural network models, respectively. Compared with LSTM, the BPNN plays the performance of EEMD better, reduces the error to a certain extent, and improves the prediction accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] PM2.5 Forecast of Beijing Based on Ensemble Empirical Mode Decomposition and BP Neural Network
    Ren X.
    Zou S.
    Tang X.
    Wei J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (04): : 615 - 625
  • [42] A Novel Fingerprint Liveness Detection Method using Empirical Mode Decomposition and Neural Network
    Tong, Shekun
    Lu, Chunmeng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 1123 - 1131
  • [43] Median ensemble empirical mode decomposition
    Lang, Xun
    Rehman, Naveed Ur
    Zhang, Yufeng
    Xie, Lei
    Su, Hongye
    SIGNAL PROCESSING, 2020, 176
  • [44] Hybrid intelligent forecasting model based on empirical mode decomposition, support vector regression and adaptive linear neural network
    He, ZJ
    Hu, Q
    Zi, YY
    Zhang, ZS
    Chen, XF
    ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 324 - 327
  • [45] Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction
    Liu, Ming-De
    Ding, Lin
    Bai, Yu-Long
    ENERGY CONVERSION AND MANAGEMENT, 2021, 233
  • [46] Network delay prediction based on model of modified ensemble empirical mode decomposition-permutation entropy and cuckoo search-wavelet neural network
    Shi W.
    Guo M.
    1600, Chinese Institute of Electronics (42): : 184 - 190
  • [47] A novel hybrid wind speed interval prediction model based on mode decomposition and gated recursive neural network
    Xu, Haiyan
    Chang, Yuqing
    Zhao, Yong
    Wang, Fuli
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (58) : 87097 - 87113
  • [48] A novel hybrid wind speed interval prediction model based on mode decomposition and gated recursive neural network
    Haiyan Xu
    Yuqing Chang
    Yong Zhao
    Fuli Wang
    Environmental Science and Pollution Research, 2022, 29 : 87097 - 87113
  • [49] A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning
    Liu, Shidi
    Wan, Yiran
    Yang, Wen
    Tan, Andi
    Jian, Jinfeng
    Lei, Xun
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (01)
  • [50] Capacity optimal allocation of hybrid energy storage in DC distribution network based on Ensemble Empirical Mode Decomposition
    Zhao, Zheng
    Zheng, Kuan
    Xing, Yong
    Yu, Jinpu
    ENERGY REPORTS, 2023, 9 : 535 - 539