A Novel Hybrid Model Combining BPNN Neural Network and Ensemble Empirical Mode Decomposition

被引:0
|
作者
Li, Huiling [1 ]
Wang, Qi [1 ]
Wei, Daijun [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Xue Yuan Rd, Enshi 445000, Hubei, Peoples R China
关键词
Time series; Neural network; Ensemble empirical mode decomposition; EEMD-BPNN hybrid model; CRUDE-OIL PRICE; FAULT-DIAGNOSIS; IMPROVED EEMD; TIME-SERIES; EMD; CLASSIFICATION; LSTM;
D O I
10.1007/s44196-024-00446-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network models have been successfully used to predict stock prices, weather, and traffic patterns. Due to the sensitivity of the data, it is very effective in identifying and maintaining long-term dependencies in time series. The back propagation neural network (BPNN) model works well in regression and classification applications, such as predicting stock prices and sales volumes. BPNN needs to sort out the mapping between inputs and outputs before continuous values. BPNN neural network model is integrated with ensemble empirical mode decomposition (EEMD), and a new hybrid neural network prediction model is constructed. Integrating ensemble empirical mode decomposition, collecting and preprocessing sequence features, reducing noise, improving robustness, and then training neural networks with returned feature vectors instead. In the international gold price series forecasting, the R 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of the new hybrid model is 1.85 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the existing EEMD-LSTM model, 3.8 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.44 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the independent BPNN and long short-term memory network (LSTM) neural network models, respectively. Compared with LSTM, the BPNN plays the performance of EEMD better, reduces the error to a certain extent, and improves the prediction accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Hybrid Model for Short Term Wind Speed Forecasting Using Empirical Mode Decomposition and Artificial Neural Network
    Dokur, Emrah
    Kurban, Mehmet
    Ceyhan, Salim
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 420 - 423
  • [32] A Hybrid Model for Short-Time Wind Power Forecasting Base on Ensemble Empirical Mode Decomposition and Volterra Neural Networks
    Zhang Bingjiang
    Zhang Wanjie
    2018 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2018, : 2099 - 2103
  • [33] A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network
    Yu, Yun-luo
    Li, Wei
    Sheng, De-ren
    Chen, Jian-hong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2016, 17 (02): : 101 - 114
  • [34] A Hybrid Model for Congestion Prediction in HF Spectrum Based on Complete Ensemble Empirical Mode Decomposition
    Bai, Yang
    Li, Hongbo
    Zhang, Yun
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [35] Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition
    Huang, Shengxiang
    Wang, Xinpeng
    Li, Chenfeng
    Kang, Chao
    MEASUREMENT, 2019, 139 : 438 - 453
  • [36] Rainfall Forecasting Based on Ensemble Empirical Mode Decomposition and Neural Networks
    Beltran-Castro, Juan
    Valencia-Aguirre, Juliana
    Orozco-Alzate, Mauricio
    Castellanos-Dominguez, German
    Travieso-Gonzalez, Carlos M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 471 - 480
  • [37] A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition
    Zhang, Xike
    Zhang, Qiuwen
    Zhang, Gui
    Nie, Zhiping
    Gui, Zifan
    Que, Huafei
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (05)
  • [38] ARTIFICIAL NEURAL NETWORK BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION FEATURES FOR HUMAN GAIT DIAGNOSIS AND CLASSIFICATION
    Alkhatib, Rami
    Diab, Mohamad O.
    Corbier, Christophe
    El Badaoui, Mohamed
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 5, 2020,
  • [39] Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
    Santhosh, Madasthu
    Venkaiah, Chintham
    Kumar, D. M. Vinod
    ENERGY CONVERSION AND MANAGEMENT, 2018, 168 : 482 - 493
  • [40] A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition
    Sridhar, Sriniketan
    Romney, Anibal
    Manian, Vidya
    INFORMATION, 2023, 14 (09)