A Novel Hybrid Model Combining BPNN Neural Network and Ensemble Empirical Mode Decomposition

被引:0
|
作者
Li, Huiling [1 ]
Wang, Qi [1 ]
Wei, Daijun [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Xue Yuan Rd, Enshi 445000, Hubei, Peoples R China
关键词
Time series; Neural network; Ensemble empirical mode decomposition; EEMD-BPNN hybrid model; CRUDE-OIL PRICE; FAULT-DIAGNOSIS; IMPROVED EEMD; TIME-SERIES; EMD; CLASSIFICATION; LSTM;
D O I
10.1007/s44196-024-00446-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network models have been successfully used to predict stock prices, weather, and traffic patterns. Due to the sensitivity of the data, it is very effective in identifying and maintaining long-term dependencies in time series. The back propagation neural network (BPNN) model works well in regression and classification applications, such as predicting stock prices and sales volumes. BPNN needs to sort out the mapping between inputs and outputs before continuous values. BPNN neural network model is integrated with ensemble empirical mode decomposition (EEMD), and a new hybrid neural network prediction model is constructed. Integrating ensemble empirical mode decomposition, collecting and preprocessing sequence features, reducing noise, improving robustness, and then training neural networks with returned feature vectors instead. In the international gold price series forecasting, the R 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of the new hybrid model is 1.85 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the existing EEMD-LSTM model, 3.8 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.44 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the independent BPNN and long short-term memory network (LSTM) neural network models, respectively. Compared with LSTM, the BPNN plays the performance of EEMD better, reduces the error to a certain extent, and improves the prediction accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting
    Xue-hua Zhao
    Xu Chen
    Water Resources Management, 2015, 29 : 2913 - 2926
  • [22] A Hybrid Model for Congestion Prediction in HF Spectrum Based on Ensemble Empirical Mode Decomposition
    Bai, Yang
    Li, Hongbo
    Zhang, Yun
    2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY ICEICT 2016 PROCEEDINGS, 2016, : 428 - 431
  • [23] Multiscale rainfall forecasting using a hybrid ensemble empirical mode decomposition and LSTM model
    Jyostna, Bellamkonda
    Meena, Admala
    Rathod, Santosha
    Tuti, Mangal Deep
    Choudhary, Kapil
    Lama, Achal
    Kumar, Ammaladinne Tharun
    Reddy, Bojjireddygari Nanda Kumar
    Bhanusree, D.
    Rakesh, J.
    Swarnaraj, Arun Kumar
    Kumar, Anil
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (02)
  • [24] MODEL VALIDATION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION
    Chang, Yu-Mei
    Wu, Zhaohua
    Chang, Julius
    Huang, Norden E.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2010, 2 (04) : 415 - 428
  • [25] Electricity Demand Forecasting with a Novel Hybrid Multi-Output Feedforward Neural Network and Empirical Mode Decomposition
    Wu, Liping
    Yang, Qiusheng
    Du, Guiqing
    Wang, Jinghua
    2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT SCIENCE (ICIEMS 2013), 2013, : 1107 - 1113
  • [26] Soil Temperature Prediction Using Convolutional Neural Network Based on Ensemble Empirical Mode Decomposition
    Hao, Huibowen
    Yu, Fanhua
    Li, Qingliang
    IEEE ACCESS, 2021, 9 : 4084 - 4096
  • [27] A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting
    Yuzgee, Ugur
    Dokur, Emrah
    Balci, Mehmet
    ENERGY, 2024, 300
  • [28] Network traffic prediction model based on ensemble empirical mode decomposition and multiple models
    Lian, Lian
    Tian, Zhongda
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (17)
  • [29] HYBRID IMPROVED EMPIRICAL MODE DECOMPOSITION AND ARTIFICIAL NEURAL NETWORK MODEL FOR THE PREDICTION OF CRITICAL HEAT FLUX (CHF)
    Djeddou, Messaoud
    Zhao, Xingang
    Hameed, Ibrahim A.
    Rahmani, Ahmed
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 2, 2021,
  • [30] A Hybrid Demand Forecasting Model Based on Empirical Mode Decomposition and Neural Network in TFT-LCD Industry
    Chen, Kwo-Liang
    Yeh, Ching-Chiang
    Lu, Tz-Ling
    CYBERNETICS AND SYSTEMS, 2012, 43 (05) : 426 - 441