A Novel Hybrid Model Combining BPNN Neural Network and Ensemble Empirical Mode Decomposition

被引:0
|
作者
Li, Huiling [1 ]
Wang, Qi [1 ]
Wei, Daijun [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Xue Yuan Rd, Enshi 445000, Hubei, Peoples R China
关键词
Time series; Neural network; Ensemble empirical mode decomposition; EEMD-BPNN hybrid model; CRUDE-OIL PRICE; FAULT-DIAGNOSIS; IMPROVED EEMD; TIME-SERIES; EMD; CLASSIFICATION; LSTM;
D O I
10.1007/s44196-024-00446-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network models have been successfully used to predict stock prices, weather, and traffic patterns. Due to the sensitivity of the data, it is very effective in identifying and maintaining long-term dependencies in time series. The back propagation neural network (BPNN) model works well in regression and classification applications, such as predicting stock prices and sales volumes. BPNN needs to sort out the mapping between inputs and outputs before continuous values. BPNN neural network model is integrated with ensemble empirical mode decomposition (EEMD), and a new hybrid neural network prediction model is constructed. Integrating ensemble empirical mode decomposition, collecting and preprocessing sequence features, reducing noise, improving robustness, and then training neural networks with returned feature vectors instead. In the international gold price series forecasting, the R 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of the new hybrid model is 1.85 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the existing EEMD-LSTM model, 3.8 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.44 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} better than the independent BPNN and long short-term memory network (LSTM) neural network models, respectively. Compared with LSTM, the BPNN plays the performance of EEMD better, reduces the error to a certain extent, and improves the prediction accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Novel Hybrid Model Combining BPNN Neural Network and Ensemble Empirical Mode Decomposition
    Huiling Li
    Qi Wang
    Daijun Wei
    International Journal of Computational Intelligence Systems, 17
  • [2] A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction
    Niu, Xiaoxu
    Ma, Junwei
    Wang, Yankun
    Zhang, Junrong
    Chen, Hongjie
    Tang, Huiming
    APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [3] A Hybrid Model of Primary Ensemble Empirical Mode Decomposition and Quantum Neural Network in Financial Time Series Prediction
    Wang, Caifeng
    Yang, Yukun
    Xu, Linlin
    Wong, Alexander
    FLUCTUATION AND NOISE LETTERS, 2023, 22 (04):
  • [4] Forecasting wavelet neural hybrid network with financial ensemble empirical mode decomposition and MCID evaluation
    Yang, Yu
    Wang, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [5] Forecasting wavelet neural hybrid network with financial ensemble empirical mode decomposition and MCID evaluation
    Yang, Yu
    Wang, Jun
    Expert Systems with Applications, 2021, 166
  • [6] A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
    Zhou, Qingping
    Jiang, Haiyan
    Wang, Jianzhou
    Zhou, Jianling
    SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 496 : 264 - 274
  • [7] A Hybrid Model for Annual Runoff Time Series Forecasting Using Elman Neural Network with Ensemble Empirical Mode Decomposition
    Zhang, Xike
    Zhang, Qiuwen
    Zhang, Gui
    Nie, Zhiping
    Gui, Zifan
    WATER, 2018, 10 (04)
  • [8] A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction
    Lin, Yu
    Liao, Qidong
    Lin, Zixiao
    Tan, Bin
    Yu, Yuanyuan
    RESOURCES POLICY, 2022, 78
  • [9] A hybrid model for wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks
    Wang, He
    Hu, Zhijian
    Chen, Zhen
    Zhang, Menglin
    He, Jianbo
    Li, Chen
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2013, 28 (09): : 137 - 144
  • [10] A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network
    Zhu, Bangzhu
    ENERGIES, 2012, 5 (02) : 355 - 370