Machine-Learning-Enabled Foil Design Assistant

被引:2
|
作者
Kostas, Konstantinos V. [1 ]
Manousaridou, Maria [2 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Mech & Aerosp Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Sch Engn & Digital Sci, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
关键词
parametric models; design assistant; design optimization; neural networks; airfoils; hydrofoils; ORDER PANEL METHOD; SHAPE-OPTIMIZATION; BEZIER-PARSEC; ALGORITHM;
D O I
10.3390/jmse11071470
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work, supervised Machine Learning (ML) techniques were employed to solve the forward and inverse problems of airfoil and hydrofoil design. The forward problem pertains to the prediction of a foil's aerodynamic or hydrodynamic performance given its geometric description, whereas the inverse problem calls for the identification of the geometric profile exhibiting a given set of performance indices. This study begins with the consideration of multivariate linear regression as the base approach in addressing the requirements of the two problems, and it then proceeds with the training of a series of Artificial Neural Networks (ANNs) in predicting performance (lift and drag coefficients over a range of angles of attack) and geometric design (foil profiles), which were subsequently compared to the base approach. Two novel components were employed in this study: a high-level parametric model for foil design and geometric moments, which, as we will demonstrate in this work, had a significant beneficial impact on the training and effectiveness of the resulting ANNs. Foil parametric models have been widely used in the pertinent literature for reconstructing, modifying, and representing a wide range of airfoil and hydrofoil profile geometries. The parametric model employed in this work uses a relatively small number of parameters, 17, to describe uniquely and accurately a large dataset of profile shapes. The corresponding design vectors, coupled with the foils' geometric moments, constitute the training input from the forward ML models. Similarly, performance curves (lift and drag over a range of angles of attack) and their corresponding moments make up the input for the models used in the inverse problem. The effect of various training datasets and training methods in the predictive power of the resulting ANNs was examined in detail. The use of the best-performing ML models is then demonstrated in two relevant design scenarios. The first scenario involved a software application, the Design Foil Assistant, which allows real-time evaluation of foil designs and the identification of designs exhibiting a set of given aerodynamic or hydrodynamic parameters. The second case benchmarked the use of ML-enabled, performance-based design optimization against traditional foil design optimization carried out with classical computational analysis tools. It is demonstrated that a user-friendly real-time design assistant can be easily implemented and deployed with the identified models, whereas significant time savings with adequate accuracy can be achieved when ML tools are employed in design optimization.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Machine-learning-enabled discrete element method: The extension to three dimensions and computational issues
    Huang, Shuai
    Wang, Pei
    Lai, Zhengshou
    Yin, Zhen-Yu
    Huang, Linchong
    Xu, Changjie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
  • [22] Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks
    Musumeci, Francesco
    Fidanci, Ali Can
    Paolucci, Francesco
    Cugini, Filippo
    Tornatore, Massimo
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [23] Insights into Supported Subnanometer Catalysts Exposed to CO via Machine-Learning-Enabled Multiscale Modeling
    Wang, Yifan
    Su, Ya-Qiong
    Hensen, Emiel J. M.
    Vlachos, Dionisios G.
    CHEMISTRY OF MATERIALS, 2022, 34 (04) : 1611 - 1619
  • [24] Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks
    Francesco Musumeci
    Ali Can Fidanci
    Francesco Paolucci
    Filippo Cugini
    Massimo Tornatore
    Journal of Network and Systems Management, 2022, 30
  • [25] Fast machine-learning-enabled size reduction of microwave components using response features
    Koziel, Slawomir
    Pietrenko-Dabrowska, Anna
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] ML-DEECo: a Machine-Learning-Enabled Framework for Self-organizing Components
    Topfer, Michal
    Abdullah, Milad
    Krulis, Martin
    Bures, Tomas
    Hnetynka, Petr
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2022), 2022, : 66 - 69
  • [27] Surveillance of pathogenic bacteria on a food matrix using machine-learning-enabled paper chromogenic arrays
    Jia, Zhen
    Luo, Yaguang
    Wang, Dayang
    Holliday, Emma
    Sharma, Arnav
    Green, Madison M.
    Roche, Michelle R.
    Thompson-Witrick, Katherine
    Flock, Genevieve
    Pearlstein, Arne J.
    Yu, Hengyong
    Zhang, Boce
    BIOSENSORS & BIOELECTRONICS, 2024, 248
  • [28] Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG
    Kamble, Ashwin
    Ghare, Pradnya
    Kumar, Vinay
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 74
  • [29] Machine-Learning-Enabled Recovery of Prior Information from Experimental Breast Microwave Imaging Data
    Edwards, Keeley
    LoVetri, Joe
    Gilmore, Colin
    Jeffrey, Ian
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2022, 175 : 1 - 11
  • [30] Machine-Learning-Enabled Recovery of Prior Information from Experimental Breast Microwave Imaging Data
    Edwards K.
    Lovetri J.
    Gilmore C.
    Jeffrey I.
    Progress in Electromagnetics Research, 2022, 175 : 1 - 11