Machine-Learning-Enabled Foil Design Assistant

被引:2
|
作者
Kostas, Konstantinos V. [1 ]
Manousaridou, Maria [2 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Mech & Aerosp Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Sch Engn & Digital Sci, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
关键词
parametric models; design assistant; design optimization; neural networks; airfoils; hydrofoils; ORDER PANEL METHOD; SHAPE-OPTIMIZATION; BEZIER-PARSEC; ALGORITHM;
D O I
10.3390/jmse11071470
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work, supervised Machine Learning (ML) techniques were employed to solve the forward and inverse problems of airfoil and hydrofoil design. The forward problem pertains to the prediction of a foil's aerodynamic or hydrodynamic performance given its geometric description, whereas the inverse problem calls for the identification of the geometric profile exhibiting a given set of performance indices. This study begins with the consideration of multivariate linear regression as the base approach in addressing the requirements of the two problems, and it then proceeds with the training of a series of Artificial Neural Networks (ANNs) in predicting performance (lift and drag coefficients over a range of angles of attack) and geometric design (foil profiles), which were subsequently compared to the base approach. Two novel components were employed in this study: a high-level parametric model for foil design and geometric moments, which, as we will demonstrate in this work, had a significant beneficial impact on the training and effectiveness of the resulting ANNs. Foil parametric models have been widely used in the pertinent literature for reconstructing, modifying, and representing a wide range of airfoil and hydrofoil profile geometries. The parametric model employed in this work uses a relatively small number of parameters, 17, to describe uniquely and accurately a large dataset of profile shapes. The corresponding design vectors, coupled with the foils' geometric moments, constitute the training input from the forward ML models. Similarly, performance curves (lift and drag over a range of angles of attack) and their corresponding moments make up the input for the models used in the inverse problem. The effect of various training datasets and training methods in the predictive power of the resulting ANNs was examined in detail. The use of the best-performing ML models is then demonstrated in two relevant design scenarios. The first scenario involved a software application, the Design Foil Assistant, which allows real-time evaluation of foil designs and the identification of designs exhibiting a set of given aerodynamic or hydrodynamic parameters. The second case benchmarked the use of ML-enabled, performance-based design optimization against traditional foil design optimization carried out with classical computational analysis tools. It is demonstrated that a user-friendly real-time design assistant can be easily implemented and deployed with the identified models, whereas significant time savings with adequate accuracy can be achieved when ML tools are employed in design optimization.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Machine-Learning-Enabled Virtual Screening for Inhibitors of Lysine-Specific Histone Demethylase 1
    Zhou, Jiajun
    Wu, Shiying
    Lee, Boon Giin
    Chen, Tianwei
    He, Ziqi
    Lei, Yukun
    Tang, Bencan
    Hirst, Jonathan D.
    MOLECULES, 2021, 26 (24):
  • [32] Machine-Learning-Enabled Quantification of Metal-Based Nanoparticle Sizes Using Linear Sweep Voltammetry
    Zhu, Shan
    Qian, Junjie
    Dong, Yijia
    Sun, Fengxiang
    Jiang, Kezhu
    Zheng, Shijian
    ACS APPLIED NANO MATERIALS, 2025, 8 (10) : 5160 - 5166
  • [33] Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications
    Yang, Yuhang
    Kelkar, Varun A.
    Rajput, Hemangg S.
    Coariti, Adriana C. Salazar
    Toussaint Jr, Kimani C.
    Shao, Chenhui
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 76 : 841 - 849
  • [34] Machine-Learning-Enabled Multi-Frequency Synthesis of Space-Time-Coding Digital Metasurfaces
    Rossi, Marco
    Zhang, Lei
    Chen, Xiao Qing
    Liu, Che
    Castaldi, Giuseppe
    Cui, Tie Jun
    Galdi, Vincenzo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [35] Machine-Learning-Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation
    Hoar, Benjamin B.
    Lu, Shengtao
    Liu, Chong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (12): : 4625 - 4630
  • [36] Machine-learning-enabled intelligence computing for crisis management in small and medium-sized enterprises (SMEs)
    Zhao, Zichao
    Li, Dexuan
    Dai, Wensheng
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 191
  • [37] Machine-Learning-Enabled Tricks of the Trade for Rapid Host Material Discovery in Li-S Battery
    Zhang, Haikuo
    Wang, Zhilong
    Cai, Junfei
    Wu, Sicheng
    Li, Jinjin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (45) : 53388 - 53397
  • [38] Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images
    Rahman, Md Fashiar
    Tseng, Tzu-Liang
    Pokojovy, Michael
    McCaffrey, Peter
    Walser, Eric
    Moen, Scott
    Vo, Alex
    Ho, Johnny C.
    DIAGNOSTICS, 2024, 14 (16)
  • [39] Machine-learning-enabled discrete element method: Contact detection and resolution of irregular-shaped particles
    Lai, Zhengshou
    Chen, Qiushi
    Huang, Linchong
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2022, 46 (01) : 113 - 140
  • [40] Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization
    Thuriot-Roukos, Joelle
    Ferraz, Camila Palombo
    K. Al Rawas, Hisham
    Heyte, Svetlana
    Paul, Sebastien
    Itabaiana Jr, Ivaldo
    Pietrowski, Mariusz
    Zielinski, Michal
    Ghazzal, Mohammed N.
    Dumeignil, Franck
    Wojcieszak, Robert
    MATERIALS, 2023, 16 (19)