Machine-learning-enabled discrete element method: The extension to three dimensions and computational issues

被引:5
|
作者
Huang, Shuai [1 ,2 ]
Wang, Pei [1 ,2 ]
Lai, Zhengshou [2 ,3 ,5 ]
Yin, Zhen-Yu [2 ]
Huang, Linchong [2 ,3 ,4 ,5 ]
Xu, Changjie [1 ,2 ]
机构
[1] East China Jiaotong Univ, Inst Geotech Engn, Sch Civil Engn & Architecture, Nanchang, Jiangxi, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[3] Sun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
[4] State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
[5] Sun Yat Sen Univ, Sch Civil Engn, Guangdong Key Lab Marine Civil Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete element method; Machine learning; Irregular-shaped particle; Contact detection and resolution; FLEXIBLE DEM APPROACH; NUMERICAL-MODEL; PARTICLES; SHAPE; SIMULATION; GRAINS3D; ROTATION;
D O I
10.1016/j.cma.2024.117445
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The detection and resolution of contacts among irregular-shaped particles pose significant challenges in the discrete element method (DEM) and recent advancements have introduced a machine learning-enabled approach specifically tailored for contact detection and resolution in two dimensions. Building upon this progress, this paper extends the application of machine learning-enabled DEM to encompass the more complex and realistic three-dimensional (3D) scenario. Particles are modeled using a polyhedral representation with arbitrary shapes, and contact behavior is governed by an energy-conserving contact model based on contact volumes. The efficacy of the machine learning-enabled 3D DEM is evaluated through comparative analyses of computational time and simulation results across individual contact as well as whole DEM simulations against those obtained from the conventional DEM. The findings indicate that the machine learning-enabled approach adeptly identifies and resolves contacts among 3D irregular-shaped particles while accurately reproducing the mechanical characteristics of densely contacting particle assemblies. The computational issues and challenges associated with the machine learning-enabled DEM are also discussed. The study highlights that the machine learning-enabled approach significantly enhances computational efficiency, showcasing its potential to advance complex DEM simulations in a more efficient manner.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Machine-learning-enabled discrete element method: Contact detection and resolution of irregular-shaped particles
    Lai, Zhengshou
    Chen, Qiushi
    Huang, Linchong
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2022, 46 (01) : 113 - 140
  • [2] Computational Framework for Machine-Learning-Enabled 13C Fluxomics
    Wu, Chao
    Yu, Jianping
    Guarnieri, Michael
    Xiong, Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (01): : 103 - 115
  • [3] Machine-Learning-Enabled Thermochemistry Estimator
    Xie, Tianjun
    Wittreich, Gerhard R.
    Curnan, Matthew T.
    Gu, Geun Ho
    Seals, Kayla N.
    Tolbert, Justin S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024,
  • [4] Machine-learning-enabled plasma modeling and prediction
    Faraji, Farbod
    Reza, Maryam
    Knoll, Aaron
    AIAA SCITECH 2024 FORUM, 2024,
  • [5] Machine-Learning-Enabled Foil Design Assistant
    Kostas, Konstantinos V.
    Manousaridou, Maria
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [6] Machine-learning-enabled metasurface for direction of arrival estimation
    Huang, Min
    Zheng, Bin
    Cai, Tong
    Li, Xiaofeng
    Liu, Jian
    Qian, Chao
    Chen, Hongsheng
    NANOPHOTONICS, 2022, 11 (09) : 2001 - 2010
  • [7] Machine-Learning-Enabled Automatic Sonic Shear Processing
    Liang, Lin
    Lei, Ting
    PETROPHYSICS, 2021, 62 (03): : 282 - 295
  • [8] Embedding human heuristics in machine-learning-enabled probe microscopy
    Gordon, Oliver M.
    Junqueira, Filipe L. Q.
    Moriarty, Philip J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [9] A machine-learning-enabled smart neckband for monitoring dietary intake
    Park, Taewoong
    Mahmud, Talha Ibn
    Lee, Junsang
    Hong, Seokkyoon
    Park, Jae Young
    Ji, Yuhyun
    Chang, Taehoo
    Yi, Jonghun
    Kim, Min Ku
    Patel, Rita R.
    Kim, Dong Rip
    Kim, Young L.
    Lee, Hyowon
    Zhu, Fengqing
    Lee, Chi Hwan
    PNAS NEXUS, 2024, 3 (05):
  • [10] Machine-Learning-Enabled Multimode Fiber Specklegram Sensors: A Review
    Newaz, Asif
    Faruque, Md Omar
    Al Mahmud, Rabiul
    Sagor, Rakibul Hasan
    Khan, Mohammed Zahed Mustafa
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 20937 - 20950