A machine-learning-enabled smart neckband for monitoring dietary intake

被引:2
|
作者
Park, Taewoong [1 ]
Mahmud, Talha Ibn [2 ]
Lee, Junsang [1 ]
Hong, Seokkyoon [1 ]
Park, Jae Young [1 ]
Ji, Yuhyun [1 ]
Chang, Taehoo [3 ]
Yi, Jonghun [4 ]
Kim, Min Ku [1 ]
Patel, Rita R. [5 ]
Kim, Dong Rip [4 ]
Kim, Young L. [1 ]
Lee, Hyowon [1 ,6 ]
Zhu, Fengqing [2 ]
Lee, Chi Hwan [1 ,2 ,3 ,6 ,7 ]
机构
[1] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[2] Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Hanyang Univ, Sch Mech Engn, Seoul 04763, South Korea
[5] Indiana Univ, Dept Speech Language & Hearing Sci, Bloomington, IN 47408 USA
[6] Purdue Univ, Ctr Implantable Devices, W Lafayette, IN 47907 USA
[7] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
来源
PNAS NEXUS | 2024年 / 3卷 / 05期
关键词
bioelectronics; wearable; machine learning; dietary intake; smart neckband; MANAGEMENT; INSULIN; SENSOR;
D O I
10.1093/pnasnexus/pgae156
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing need for precise dietary monitoring across various health scenarios has led to innovations in wearable sensing technologies. However, continuously tracking food and fluid intake during daily activities can be complex. In this study, we present a machine-learning-powered smart neckband that features wireless connectivity and a comfortable, foldable design. Initially considered beneficial for managing conditions such as diabetes and obesity by facilitating dietary control, the device's utility extends beyond these applications. It has proved to be valuable for sports enthusiasts, individuals focused on diet control, and general health monitoring. Its wireless connectivity, ergonomic design, and advanced classification capabilities offer a promising solution for overcoming the limitations of traditional dietary tracking methods, highlighting its potential in personalized healthcare and wellness strategies.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine-Learning-Enabled Thermochemistry Estimator
    Xie, Tianjun
    Wittreich, Gerhard R.
    Curnan, Matthew T.
    Gu, Geun Ho
    Seals, Kayla N.
    Tolbert, Justin S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024,
  • [2] Machine-learning-enabled plasma modeling and prediction
    Faraji, Farbod
    Reza, Maryam
    Knoll, Aaron
    AIAA SCITECH 2024 FORUM, 2024,
  • [3] Machine-Learning-Enabled Foil Design Assistant
    Kostas, Konstantinos V.
    Manousaridou, Maria
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [4] Machine-learning-enabled metasurface for direction of arrival estimation
    Huang, Min
    Zheng, Bin
    Cai, Tong
    Li, Xiaofeng
    Liu, Jian
    Qian, Chao
    Chen, Hongsheng
    NANOPHOTONICS, 2022, 11 (09) : 2001 - 2010
  • [5] Machine-Learning-Enabled Automatic Sonic Shear Processing
    Liang, Lin
    Lei, Ting
    PETROPHYSICS, 2021, 62 (03): : 282 - 295
  • [6] Embedding human heuristics in machine-learning-enabled probe microscopy
    Gordon, Oliver M.
    Junqueira, Filipe L. Q.
    Moriarty, Philip J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [7] Machine-Learning-Enabled Multimode Fiber Specklegram Sensors: A Review
    Newaz, Asif
    Faruque, Md Omar
    Al Mahmud, Rabiul
    Sagor, Rakibul Hasan
    Khan, Mohammed Zahed Mustafa
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 20937 - 20950
  • [8] Machine-Learning-Enabled Vectorial Opto-Magnetization Orientation
    Yan, Weichao
    Nie, Zhongquan
    Zeng, Xunwen
    Dai, Guohong
    Cai, Mengqiang
    Shen, Yun
    Deng, Xiaohua
    ANNALEN DER PHYSIK, 2022, 534 (01)
  • [9] Computational Framework for Machine-Learning-Enabled 13C Fluxomics
    Wu, Chao
    Yu, Jianping
    Guarnieri, Michael
    Xiong, Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (01): : 103 - 115
  • [10] Machine-Learning-Enabled Ligand Screening for Cs/Sr Crystallizing Separation
    Wang, Bingbing
    Zhang, Zhiyuan
    Dong, Yue
    Qiu, Yuqing
    Ren, Junyu
    Bi, Kexin
    Ji, Xu
    Liu, Chong
    Zhou, Li
    Dai, Yiyang
    INORGANIC CHEMISTRY, 2023, 62 (33) : 13293 - 13303