Self-Supervised Learning for Electroencephalography

被引:171
|
作者
Rafiei, Mohammad H. [1 ]
Gauthier, Lynne V. [2 ]
Adeli, Hojjat [3 ,4 ]
Takabi, Daniel [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Univ Massachusetts Lowell, Dept Phys Therapy & Kinesiol, Lowell, MA 01854 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
Electroencephalography; Brain modeling; Data models; Task analysis; Machine learning; Training; Heuristic algorithms; Electroencephalography (EEG); machine learning; self-supervised learning (SSL); BRAIN-COMPUTER INTERFACE; EMOTION RECOGNITION; NEURAL-NETWORK; EEG; SYSTEM; CLASSIFICATION; SLEEP; FEATURES; FRAMEWORK; ALGORITHM;
D O I
10.1109/TNNLS.2022.3190448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
引用
收藏
页码:1457 / 1471
页数:15
相关论文
共 50 条
  • [11] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [12] A New Self-supervised Method for Supervised Learning
    Yang, Yuhang
    Ding, Zilin
    Cheng, Xuan
    Wang, Xiaomin
    Liu, Ming
    INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021), 2021, 12155
  • [13] Self-Supervised Adversarial Variational Learning
    Ye, Fei
    Bors, Adrian. G.
    PATTERN RECOGNITION, 2024, 148
  • [14] Self-supervised Learning for Spinal MRIs
    Jamaludin, Amir
    Kadir, Timor
    Zisserman, Andrew
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 : 294 - 302
  • [15] Self-Supervised Learning of Robot Manipulation
    Tommy, Robin
    Krishnan, Athira R.
    2020 4TH INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTS (ICACR 2020), 2020, : 22 - 25
  • [16] Self-supervised Learning: A Succinct Review
    Rani, Veenu
    Nabi, Syed Tufael
    Kumar, Munish
    Mittal, Ajay
    Kumar, Krishan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (04) : 2761 - 2775
  • [17] Audio self-supervised learning: A survey
    Liu, Shuo
    Mallol-Ragolta, Adria
    Parada-Cabaleiro, Emilia
    Qian, Kun
    Jing, Xin
    Kathan, Alexander
    Hu, Bin
    Schuller, Bjorn W.
    PATTERNS, 2022, 3 (12):
  • [18] MarioNette: Self-Supervised Sprite Learning
    Smirnov, Dmitriy
    Gharbi, Michael
    Fisher, Matthew
    Guizilini, Vitor
    Efros, Alexei A.
    Solomon, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [19] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [20] Self-supervised Learning: A Succinct Review
    Veenu Rani
    Syed Tufael Nabi
    Munish Kumar
    Ajay Mittal
    Krishan Kumar
    Archives of Computational Methods in Engineering, 2023, 30 : 2761 - 2775