Self-supervised Learning for Spinal MRIs

被引:53
|
作者
Jamaludin, Amir [1 ]
Kadir, Timor [2 ]
Zisserman, Andrew [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, VGG, Oxford, England
[2] Optellum, Oxford, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-67558-9_34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A significant proportion of patients scanned in a clinical setting have follow-up scans. We show in this work that such longitudinal scans alone can be used as a form of "free" self-supervision for training a deep network. We demonstrate this self-supervised learning for the case of T2-weighted sagittal lumbar Magnetic Resonance Images (MRIs). A Siamese convolutional neural network (CNN) is trained using two losses: (i) a contrastive loss on whether the scan is of the same person (i.e. longitudinal) or not, together with (ii) a classification loss on predicting the level of vertebral bodies. The performance of this pre-trained network is then assessed on a grading classification task. We experiment on a dataset of 1016 subjects, 423 possessing follow-up scans, with the end goal of learning the disc degeneration radiological gradings attached to the intervertebral discs. We show that the performance of the pre trained CNN on the supervised classification task is (i) superior to that of a network trained from scratch; and (ii) requires far fewer annotated training samples to reach an equivalent performance to that of the network trained from scratch.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [1] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [2] Self-Supervised Dialogue Learning
    Wu, Jiawei
    Wang, Xin
    Wang, William Yang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3857 - 3867
  • [3] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [4] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [5] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [7] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [8] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471
  • [9] A New Self-supervised Method for Supervised Learning
    Yang, Yuhang
    Ding, Zilin
    Cheng, Xuan
    Wang, Xiaomin
    Liu, Ming
    INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021), 2021, 12155
  • [10] Self-Supervised Adversarial Variational Learning
    Ye, Fei
    Bors, Adrian. G.
    PATTERN RECOGNITION, 2024, 148