Self-Supervised Learning for Electroencephalography

被引:171
|
作者
Rafiei, Mohammad H. [1 ]
Gauthier, Lynne V. [2 ]
Adeli, Hojjat [3 ,4 ]
Takabi, Daniel [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Univ Massachusetts Lowell, Dept Phys Therapy & Kinesiol, Lowell, MA 01854 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
Electroencephalography; Brain modeling; Data models; Task analysis; Machine learning; Training; Heuristic algorithms; Electroencephalography (EEG); machine learning; self-supervised learning (SSL); BRAIN-COMPUTER INTERFACE; EMOTION RECOGNITION; NEURAL-NETWORK; EEG; SYSTEM; CLASSIFICATION; SLEEP; FEATURES; FRAMEWORK; ALGORITHM;
D O I
10.1109/TNNLS.2022.3190448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
引用
收藏
页码:1457 / 1471
页数:15
相关论文
共 50 条
  • [41] SELF-SUPERVISED LEARNING-MODEL
    SAGA, K
    SUGASAKA, T
    SEKIGUCHI, M
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 1993, 29 (03): : 209 - 216
  • [42] On Feature Decorrelation in Self-Supervised Learning
    Hua, Tianyu
    Wang, Wenxiao
    Xue, Zihui
    Ren, Sucheng
    Wang, Yue
    Zhao, Hang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9578 - 9588
  • [43] Self-Supervised Adversarial Imitation Learning
    Monteiro, Juarez
    Gavenski, Nathan
    Meneguzzi, Felipe
    Barros, Rodrigo C.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [44] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [45] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [46] Self-Supervised Learning Across Domains
    Bucci, Silvia
    D'Innocente, Antonio
    Liao, Yujun
    Carlucci, Fabio Maria
    Caputo, Barbara
    Tommasi, Tatiana
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5516 - 5528
  • [47] Nonequilibrium thermodynamics of self-supervised learning
    Salazar, Domingos S. P.
    PHYSICS LETTERS A, 2021, 419
  • [48] Reverse Engineering Self-Supervised Learning
    Ben-Shaul, Ido
    Shwartz-Ziv, Ravid
    Galanti, Tomer
    Dekel, Shai
    LeCun, Yann
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [49] Self-supervised Learning for CT Deconvolution
    Sudhakar, Prasad
    Langoju, Rajesh
    Agrawal, Utkarsh
    Patil, Bhushan D.
    Narayanan, Ajay
    Chaugule, Vinay
    Amilneni, Vinod
    Cheerankal, Paul
    Das, Bipul
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [50] Self-supervised learning for climate downscaling
    Singh, Karandeep
    Jeong, Chaeyoon
    Park, Sungwon
    Babur, Arjun N.
    Zeller, Elke
    Cha, Meeyoung
    2023 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP, 2023, : 13 - 17