On the linearized Whitham-Broer-Kaup system on bounded domains

被引:0
|
作者
Liverani, L. [1 ]
Mammeri, Y. [2 ]
Pata, V. [3 ]
Quintanilla, R. [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Edificio U5,Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Jean Monnet, CNRS, Inst Camille Jordan, UMR 5208, 23Rue Dr Paul Michelon, F-42100 Saint Etienne, France
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Univ Politecn Cataluna, Dept Matematiques, C Colom 11, Terrassa 08222, Barcelona, Spain
关键词
Whitham-Broer-Kaup system; dispersive equations; spectrum; linear semigroups; TRAVELING-WAVE SOLUTIONS; EQUATIONS; EXPLICIT;
D O I
10.1017/prm.2023.85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of partial differential equations {eta(t) - alpha u(xxx) - beta eta(xx) = 0 u(t) + eta(x) + beta u(xx) = 0 on bounded domains, known in the literature as the Whitham-Broer-Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number x = alpha - beta(2). In particular, existence and uniqueness occur if and only if x > 0. In which case, an explicit representation for the solutions is given. Nonetheless, for the case x <= 0 we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Symmetry analysis for Whitham-Broer-Kaup equations
    Zhang, Zhiyong
    Yong, Xuelin
    Chen, Yufu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (04) : 383 - 397
  • [2] Symmetry analysis for Whitham-Broer-Kaup equations
    Zhiyong Zhang
    Xuelin Yong
    Yufu Chen
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 383 - 397
  • [3] ON FRACTIONAL COUPLED WHITHAM-BROER-KAUP EQUATIONS
    Kadem, Abdelouahab
    Baleanu, Dumitru
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 (5-6): : 629 - 635
  • [4] Optimal System and Group Invariant Solutions of the Whitham-Broer-Kaup System
    Hu, Xiaorui
    Jin, Yongyang
    Zhou, Kai
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [5] New groups of solutions to the Whitham-Broer-Kaup equation
    Yaji Wang
    Hang Xu
    Q. Sun
    Applied Mathematics and Mechanics, 2020, 41 : 1735 - 1746
  • [6] More Solutions of Coupled Whitham-Broer-Kaup Equations
    Kumar, Mukesh
    Tiwari, Atul Kumar
    Kumar, Raj
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (04) : 747 - 755
  • [7] New groups of solutions to the Whitham-Broer-Kaup equation
    Yaji WANG
    Hang XU
    Q.SUN
    Applied Mathematics and Mechanics(English Edition), 2020, 41 (11) : 1735 - 1746
  • [8] New groups of solutions to the Whitham-Broer-Kaup equation
    Wang, Yaji
    Xu, Hang
    Sun, Q.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2020, 41 (11) : 1735 - 1746
  • [9] Evolutions of Wave Patterns in Whitham-Broer-Kaup Equation
    Zhang Zheng-Di
    Bi Qin-Sheng
    CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [10] Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations
    Xu, GQ
    Li, ZB
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 549 - 556