Higher-order topological phases emerging from Su-Schrieffer-Heeger stacking

被引:15
|
作者
Luo, Xun-Jiang [1 ,2 ,3 ]
Pan, Xiao-Hong [2 ,3 ,4 ,5 ]
Liu, Chao-Xing [6 ]
Liu, Xin [2 ,3 ,4 ,5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan 430074, Hubei, Peoples R China
[5] Hubei Key Lab Gravitat & Quantum Phys, Wuhan 430074, Hubei, Peoples R China
[6] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevB.107.045118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we develop a systematic approach of constructing and classifying the model Hamiltonians for two-dimensional (2D) higher-order topological phase with corner zero-energy states (CZESs). Our approach is based on the direct construction of an analytical solution of the CZESs in a series of 2D systems stacking the 1D extended Su-Schrieffer-Heeger (SSH) model, two copies of the two-band SSH model, along with two orthogonal directions. Fascinatingly, our approach not only gives the celebrated Benalcazar-Bernevig-Hughes and 2D SSH models but also reveals a novel model and we name it 2D crossed SSH model. Although these three models exhibit completely different bulk topology, we find that the CZESs can be universally characterized by edge winding number for 1D edge states, attributing to their unified Hamiltonian construction form and edge topology. Remarkably, our principle of constructing CZESs can be readily generalized to 3D and superconducting systems. Our work sheds new light on the theoretical understanding of the higher-order topological phases and paves the way to looking for higher-order topological insulators and superconductors.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fate of high winding number topological phases in the disordered extended Su-Schrieffer-Heeger model
    Cinnirella, Emmanuele G.
    Nava, Andrea
    Campagnano, Gabriele
    Giuliano, Domenico
    PHYSICAL REVIEW B, 2024, 109 (03)
  • [42] Downfolding the Su-Schrieffer-Heeger model
    Schobert, Arne
    Berges, Jan
    Wehling, Tim
    van Loon, Erik
    SCIPOST PHYSICS, 2021, 11 (04):
  • [43] Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator
    Ivanov, Sergey K.
    Zhuravitskii, Sergei A.
    Skryabin, Nikolay N.
    Dyakonov, Ivan V.
    Kalinkin, Alexander A.
    Kulik, Sergei P.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zadkov, Victor N.
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [44] Topological nodal points in two coupled Su-Schrieffer-Heeger chains
    Li, C.
    Lin, S.
    Zhang, G.
    Song, Z.
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [45] Topological Graphene Plasmons in a Plasmonic Realization of the Su-Schrieffer-Heeger Model
    Rappoport, Tatiana G.
    Bludov, Yuliy, V
    Koppens, Frank H. L.
    Peres, Nuno M. R.
    ACS PHOTONICS, 2021, 8 (06) : 1817 - 1823
  • [46] Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays
    Petropoulos, Nikolaos
    Bogdan Staszewski, Robert
    Leipold, Dirk
    Blokhina, Elena
    Journal of Applied Physics, 2022, 131 (07):
  • [47] Topological entanglement properties of disconnected partitions in the Su-Schrieffer-Heeger model
    Micallo, Tommaso
    Vitale, Vittorio
    Dalmonte, Marcello
    Fromholz, Pierre
    SCIPOST PHYSICS CORE, 2020, 3 (02):
  • [48] Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model
    Ma, Y-P
    Susanto, H.
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [49] Topological States in Two-Dimensional Su-Schrieffer-Heeger Models
    Li, Chang-An
    FRONTIERS IN PHYSICS, 2022, 10
  • [50] Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays
    Petropoulos, Nikolaos
    Bogdan Staszewski, Robert
    Leipold, Dirk
    Blokhina, Elena
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (07)