Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays

被引:6
|
作者
Petropoulos, Nikolaos [1 ,2 ,3 ,4 ]
Bogdan Staszewski, Robert [1 ,2 ,3 ,4 ]
Leipold, Dirk [3 ,4 ]
Blokhina, Elena [1 ,2 ,3 ,4 ]
机构
[1] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol C QuEST, Dublin 4, Ireland
[2] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin 4, Ireland
[3] Equal1 Labs, Fremont, CA 94546 USA
[4] Univ Coll Dublin Campus, NovaUCD, Dublin 4, Ireland
关键词
D O I
10.1063/5.0082214
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, building on the 1D topological Su-Schrieffer-Heeger (SSH) model, we propose a model of quantum dot arrays with odd and even parity and variable on-site local potentials to examine topological edge states and a possible quantum information encoding, using these states. We first investigate the SSH model with alternating tunneling amplitudes t(1) and t(2). We study the model in a ring-like structure and then proceed to minimal open-end chains with even ( N = 4) and odd ( N = 5) number of dots. Furthermore, we depart from the basic SSH model by introducing local potentials mu(i), which offer additional control at the cost of breaking the chiral symmetry of the Hamiltonian and study the implications. Then, we propose an idealized "static " charge qubit design, based on encoding the topological invariant nu as qubit states, that exploits the topological nature of the edge states and their collective character. We introduce perturbing noise delta t(q)( t ) into the system and demonstrate the robustness of the states for some range of the ratio xi = t(1)/t(2). Moreover, we show a possible way to detect the presence of topological order in the system using equilibrium dynamics for both even and odd chains. We utilize the quantum informatic measure of bipartite mutual information I-{ b : e } (( 2 )) ( t ) as a measure of bulk-edge quantum correlations and a quantitative indicator for the manifestation of bulk-edge correspondence; here, we also propose a dynamical qubit encoding with nu for specific quantum chain parity. Finally, we offer a few remarks on potential future explorations. (c) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082214
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays
    Petropoulos, Nikolaos
    Bogdan Staszewski, Robert
    Leipold, Dirk
    Blokhina, Elena
    Journal of Applied Physics, 2022, 131 (07):
  • [2] Tunable topological edge modes in Su-Schrieffer-Heeger arrays
    Chaplain, G. J.
    Gliozzi, A. S.
    Davies, B.
    Urban, D.
    Descrovi, E.
    Bosia, F.
    Craster, R. V.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [3] Topological solitons in coupled Su-Schrieffer-Heeger waveguide arrays
    Sabour, Khalil
    Kartashov, Yaroslav V.
    OPTICS LETTERS, 2024, 49 (13) : 3580 - 3583
  • [4] Topological quantum interference in a pumped Su-Schrieffer-Heeger lattice
    Li, Zeng-Zhao
    Atalaya, Juan
    Whaley, K. Birgitta
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [5] Topological properties of a class of Su-Schrieffer-Heeger variants
    Bid, Subhajyoti
    Chakrabarti, Arunava
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 423
  • [6] Topological properties of a class of Su-Schrieffer-Heeger variants
    Bid, Subhajyoti
    Chakrabarti, Arunava
    PHYSICS LETTERS A, 2022, 423
  • [7] Topological edge states in the Su-Schrieffer-Heeger model
    Obana, Daichi
    Liu, Feng
    Wakabayashi, Katsunori
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [8] Topological phases of generalized Su-Schrieffer-Heeger models
    Li, Linhu
    Xu, Zhihao
    Chen, Shu
    PHYSICAL REVIEW B, 2014, 89 (08):
  • [9] Topological characterizations of an extended Su-Schrieffer-Heeger model
    Xie, Dizhou
    Gou, Wei
    Xiao, Teng
    Gadway, Bryce
    Yan, Bo
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [10] Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
    Zeng, Xiang-Long
    Lai, Wen-Xi
    Wei, Yi-Wen
    Ma, Yu-Quan
    CHINESE PHYSICS B, 2024, 33 (03)