Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays

被引:6
|
作者
Petropoulos, Nikolaos [1 ,2 ,3 ,4 ]
Bogdan Staszewski, Robert [1 ,2 ,3 ,4 ]
Leipold, Dirk [3 ,4 ]
Blokhina, Elena [1 ,2 ,3 ,4 ]
机构
[1] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol C QuEST, Dublin 4, Ireland
[2] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin 4, Ireland
[3] Equal1 Labs, Fremont, CA 94546 USA
[4] Univ Coll Dublin Campus, NovaUCD, Dublin 4, Ireland
关键词
D O I
10.1063/5.0082214
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, building on the 1D topological Su-Schrieffer-Heeger (SSH) model, we propose a model of quantum dot arrays with odd and even parity and variable on-site local potentials to examine topological edge states and a possible quantum information encoding, using these states. We first investigate the SSH model with alternating tunneling amplitudes t(1) and t(2). We study the model in a ring-like structure and then proceed to minimal open-end chains with even ( N = 4) and odd ( N = 5) number of dots. Furthermore, we depart from the basic SSH model by introducing local potentials mu(i), which offer additional control at the cost of breaking the chiral symmetry of the Hamiltonian and study the implications. Then, we propose an idealized "static " charge qubit design, based on encoding the topological invariant nu as qubit states, that exploits the topological nature of the edge states and their collective character. We introduce perturbing noise delta t(q)( t ) into the system and demonstrate the robustness of the states for some range of the ratio xi = t(1)/t(2). Moreover, we show a possible way to detect the presence of topological order in the system using equilibrium dynamics for both even and odd chains. We utilize the quantum informatic measure of bipartite mutual information I-{ b : e } (( 2 )) ( t ) as a measure of bulk-edge quantum correlations and a quantitative indicator for the manifestation of bulk-edge correspondence; here, we also propose a dynamical qubit encoding with nu for specific quantum chain parity. Finally, we offer a few remarks on potential future explorations. (c) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082214
引用
收藏
页数:15
相关论文
共 50 条
  • [32] Entanglement and topology in Su-Schrieffer-Heeger cavity quantum electrodynamics
    Shaffer, Daniel
    Claassen, Martin
    Srivastava, Ajit
    Santos, Luiz H.
    PHYSICAL REVIEW B, 2024, 109 (15)
  • [33] Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator
    Ivanov, Sergey K.
    Zhuravitskii, Sergei A.
    Skryabin, Nikolay N.
    Dyakonov, Ivan V.
    Kalinkin, Alexander A.
    Kulik, Sergei P.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zadkov, Victor N.
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [34] Topological nodal points in two coupled Su-Schrieffer-Heeger chains
    Li, C.
    Lin, S.
    Zhang, G.
    Song, Z.
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [35] Topological Graphene Plasmons in a Plasmonic Realization of the Su-Schrieffer-Heeger Model
    Rappoport, Tatiana G.
    Bludov, Yuliy, V
    Koppens, Frank H. L.
    Peres, Nuno M. R.
    ACS PHOTONICS, 2021, 8 (06) : 1817 - 1823
  • [36] Topological Phase and Tunable Quantum State Transfer of Su-Schrieffer-Heeger Chain with an Embedded Quantum Ring
    Zhang, Xin-Yue
    Yan, Yu
    Zheng, Li-Na
    Zhang, Zhi-Xu
    Zhong, Li-Nan
    Zhang, Shou
    Wang, Hong-Fu
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (08)
  • [37] Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
    Lieu, Simon
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [38] Quantum effects on the phonon excitations of the Su-Schrieffer-Heeger model
    Wu, CQ
    Sun, X
    Kawazoe, Y
    SYNTHETIC METALS, 1997, 85 (1-3) : 1165 - 1166
  • [39] Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model
    Ma, Y-P
    Susanto, H.
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [40] Topological entanglement properties of disconnected partitions in the Su-Schrieffer-Heeger model
    Micallo, Tommaso
    Vitale, Vittorio
    Dalmonte, Marcello
    Fromholz, Pierre
    SCIPOST PHYSICS CORE, 2020, 3 (02):