Higher-order topological phases emerging from Su-Schrieffer-Heeger stacking

被引:15
|
作者
Luo, Xun-Jiang [1 ,2 ,3 ]
Pan, Xiao-Hong [2 ,3 ,4 ,5 ]
Liu, Chao-Xing [6 ]
Liu, Xin [2 ,3 ,4 ,5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan 430074, Hubei, Peoples R China
[5] Hubei Key Lab Gravitat & Quantum Phys, Wuhan 430074, Hubei, Peoples R China
[6] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevB.107.045118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we develop a systematic approach of constructing and classifying the model Hamiltonians for two-dimensional (2D) higher-order topological phase with corner zero-energy states (CZESs). Our approach is based on the direct construction of an analytical solution of the CZESs in a series of 2D systems stacking the 1D extended Su-Schrieffer-Heeger (SSH) model, two copies of the two-band SSH model, along with two orthogonal directions. Fascinatingly, our approach not only gives the celebrated Benalcazar-Bernevig-Hughes and 2D SSH models but also reveals a novel model and we name it 2D crossed SSH model. Although these three models exhibit completely different bulk topology, we find that the CZESs can be universally characterized by edge winding number for 1D edge states, attributing to their unified Hamiltonian construction form and edge topology. Remarkably, our principle of constructing CZESs can be readily generalized to 3D and superconducting systems. Our work sheds new light on the theoretical understanding of the higher-order topological phases and paves the way to looking for higher-order topological insulators and superconductors.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Topological solitons in coupled Su-Schrieffer-Heeger waveguide arrays
    Sabour, Khalil
    Kartashov, Yaroslav V.
    OPTICS LETTERS, 2024, 49 (13) : 3580 - 3583
  • [32] Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice
    Johansson, Magnus
    PHYSICS LETTERS A, 2023, 458
  • [33] Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models
    Nair, Jayakrishnan M. P.
    Scully, Marlan O.
    Agarwal, Girish S.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [34] Topological photonic Tamm states and the Su-Schrieffer-Heeger model
    Henriques, J. C. G.
    Rappoport, T. G.
    Bludov, Y., V
    Vasilevskiy, M., I
    Peres, N. M. R.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [35] Acoustic Su-Schrieffer-Heeger lattice: Direct mapping of acoustic waveguides to the Su-Schrieffer-Heeger model
    Coutant, Antonin
    Sivadon, Audrey
    Zheng, Liyang
    Achilleos, Vassos
    Richoux, Olivier
    Theocharis, Georgios
    Pagneux, Vincent
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [36] Topological gap solitons in Rabi Su-Schrieffer-Heeger lattices
    Li, Chunyan
    Kartashov, Yaroslav V.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [37] Phases and density of states in a generalized Su-Schrieffer-Heeger model
    Voo, KK
    Mou, CY
    PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 224 - 230
  • [38] Cataloging topological phases of N stacked Su-Schrieffer-Heeger chains by a systematic breaking of symmetries
    Agrawal, Aayushi
    Bandyopadhyay, Jayendra N.
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [39] Engineering topological phases of any winding and Chern numbers in extended Su-Schrieffer-Heeger models
    Malakar, Rakesh Kumar
    Ghosh, Asim Kumar
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (33)
  • [40] Topological ventilated sound switch from acoustic Su-Schrieffer-Heeger model
    Li, Qinhong
    Xiang, Xiao
    Wang, Li
    Huang, Yingzhou
    Wu, Xiaoxiao
    APPLIED PHYSICS LETTERS, 2023, 122 (19)