A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT

被引:6
|
作者
Hong, Cheng William [1 ,2 ]
Chernyak, Victoria [3 ]
Choi, Jin-Young [4 ]
Lee, Sonia [5 ]
Potu, Chetan [2 ]
Delgado, Timoteo [2 ]
Wolfson, Tanya
Gamst, Anthony
Birnbaum, Jason [6 ]
Kampalath, Rony [5 ]
Lall, Chandana [7 ]
Lee, James T. [8 ]
Owen, Joseph W. [8 ]
Aguirre, Diego A. [9 ]
Mendiratta-Lala, Mishal [10 ]
Davenport, Matthew S. [10 ]
Masch, William [10 ]
Roudenko, Alexandra [11 ]
Lewis, Sara C. [12 ]
Kierans, Andrea Siobhan [13 ]
Hecht, Elizabeth M. [13 ]
Bashir, Mustafa R. [14 ,15 ]
Brancatelli, Giuseppe [16 ]
Douek, Michael L. [17 ]
Ohliger, Michael A. [1 ]
Tang, An [18 ]
Cerny, Milena [18 ]
Fung, Alice [19 ]
Costa, Eduardo A. [20 ]
Corwin, Michael T. [21 ]
McGahan, John P. [21 ]
Kalb, Bobby [22 ]
Elsayes, Khaled M. [23 ]
Surabhi, Venkateswar R. [23 ]
Blair, Katherine [23 ]
Marks, Robert M. [24 ]
Horvat, Natally [3 ,25 ]
Best, Shaun [26 ]
Ash, Ryan [26 ]
Ganesan, Karthik [27 ]
Kagay, Christopher R. [28 ]
Kambadakone, Avinash [29 ]
Wang, Jin [30 ]
Cruite, Irene [31 ]
Bijan, Bijan [32 ]
Goodwin, Mark [33 ]
Cunha, Guilherme Moura [34 ]
Tamayo-Murillo, Dorathy [2 ]
Fowler, Kathryn J. [2 ]
Sirlin, Claude B. [2 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 513 Parnassus Ave,Box 0628, San Francisco, CA 94143 USA
[2] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA USA
[3] Mem Sloan Kettering Canc Ctr, Radiol, New York, NY USA
[4] Yonsei Univ, Dept Radiol, Seoul, South Korea
[5] Univ Calif Irvine, Dept Radiol, Orange, CA USA
[6] Univ Calif San Diego, Computat & Appl Stat Lab, San Diego, CA USA
[7] Univ Florida, Dept Radiol, Jacksonville, FL USA
[8] Univ Kentucky, Dept Radiol, Lexington, KY USA
[9] Fdn Santa Fe Bogota, Dept Radiol, Bogota, Colombia
[10] Univ Michigan, Dept Radiol, Ann Arbor, MI USA
[11] Allegheny Hlth Network, Dept Radiol, Pittsburgh, PA USA
[12] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY USA
[13] New York Presbyterian Weill Cornell Med Ctr, Dept Radiol, New York, NY USA
[14] Duke Univ, Dept Radiol, Med Ctr, New York, NY USA
[15] Duke Univ, Dept Med, Med Ctr, New York, NY USA
[16] Univ Hosp Paolo Giaccone, Sect Radiol, Dept Biomed Neurosci & Adv Diagnost, Palermo, Italy
[17] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA USA
[18] Univ Montreal, Dept Radiol, Radiat Oncol & Nucl Med, Montreal, PQ, Canada
[19] Oregon Hlth & Sci Univ, Dept Radiol, Portland, OR USA
[20] CEDRUL Ctr Diagnost Imagem, Joao Pessoa, Paraiba, Brazil
[21] Univ Calif Davis, Dept Radiol, Sacramento, CA USA
[22] Radiol Ltd, Tucson, AZ USA
[23] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
[24] Naval Med Ctr San Diego, Dept Radiol, San Diego, CA USA
[25] Univ Sao Paulo, Hosp Sirio Libanes, Sao Paulo, Brazil
[26] Univ Kansas, Dept Radiol, Kansas City, KS USA
[27] Sir HN Reliance Fdn Hosp & Res Ctr, Mumbai, India
[28] Calif Pacific Med Ctr, Dept Radiol, San Francisco, CA USA
[29] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[30] Sun Yat Sen Univ, Affiliated Hosp 3, Guangzhou, Peoples R China
[31] Inland Imaging, Spokane, WA USA
[32] Sutter Med Grp, Sacramento, CA USA
[33] Austin Hlth, Melbourne, Vic, Australia
[34] Univ Washington, Dept Radiol, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
DATA SYSTEM; HEPATOCELLULAR-CARCINOMA; DIAGNOSIS;
D O I
10.1148/radiol.222855
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods: This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results: The study population consisted of 484 patients (mean age, 62 years +/- 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P =.03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P =.005), but not for LR-5 (P =.14) or LR-M (P =.94). Conclusion: There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT (vol 307, e222855, 2023)
    Hong, Cheng William
    Chernyak, Victoria
    Choi, Jin-Young
    Lee, Sonia
    Potu, Chetan
    Delgado, Timoteo
    Wolfson, Tanya
    Gamst, Anthony
    Birnbaum, Jason
    Kam-Palath, Rony
    Lall, Chandana
    Lee, James T.
    Owen, Joseph W.
    Aguirre, Diego A.
    Mendiratta-Lala, Mishal
    Davenport, Matthew S.
    Masch, William
    Roudenko, Alexandra
    Lewis, Sara C.
    Kierans, Andrea Siobhan
    Hecht, Elizabeth M.
    Bashir, Mustafa R.
    Brancatelli, Giuseppe
    Douek, Michael L.
    Ohliger, Michael A.
    Tang, An
    Cerny, Milena
    Fung, Alice
    Costa, Eduardo A.
    Corwin, Michael T.
    McGahan, John P.
    Kalb, Bobby
    Elsayes, Khaled M.
    Surabhi, Venkateswar R.
    Blair, Katherine
    Marks, Robert M.
    Horvat, Natally
    Best, Shaun
    Ash, Ryan
    Ganesan, Karthik
    Kagay, Christopher R.
    Kambadakone, Avinash
    Wang, Jin
    Cruite, Irene
    Bijan, Bijan
    Goodwin, Mark
    Cunha, Guilherme Moura
    Tamayo-Murillo, Dorathy
    Fowler, Kathryn J.
    Sirlin, Claude B.
    RADIOLOGY, 2023, 308 (01)
  • [2] LI-RADS Version 2018 for MRI and CT: Interreader Agreement in Real-World Practice
    Galgano, Samuel J.
    Smith, Elainea N.
    RADIOLOGY, 2023, 307 (05)
  • [3] LI-RADS Version 2018 Ancillary Features at MRI
    Cerny, Milena
    Chernyak, Victoria
    Olivie, Damien
    Billiard, Jean-Sebastien
    Murphy-Lavallee, Jessica
    Kielar, Ania Z.
    Elsayes, Khaled M.
    Bourque, Laurence
    Hooker, Jonathan C.
    Sirlin, Claude B.
    Tang, An
    RADIOGRAPHICS, 2018, 38 (07) : 1973 - 2001
  • [4] Reliability of LI-RADS for MRI and CT: Is Excellence Achievable?
    Johnson, Sarah A.
    RADIOLOGY, 2023, 307 (05)
  • [5] MRI LI-RADS Version 2018: Impact of and Reduction in Ancillary Features
    van der Pol, Christian B.
    Dhindsa, Kiret
    Shergill, Ravi
    Zha, Nanxi
    Ferri, Melanie
    Kagoma, Yoan K.
    Lee, Stefanie Y.
    Satkunasingham, Janakan
    Wat, Josephine
    Tsai, Scott
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 216 (04) : 935 - 942
  • [6] LI-RADS® algorithm: CT and MRI
    Chernyak, Victoria
    Santillan, Cynthia S.
    Papadatos, Demetri
    Sirlin, Claude B.
    ABDOMINAL RADIOLOGY, 2018, 43 (01) : 111 - 126
  • [7] CT/MRI LI-RADS version 2018 versus CEUS LI-RADS version 2017 in the diagnosis of primary hepatic nodules in patients with high-risk hepatocellular carcinoma
    Lv, Kun
    Cao, Xin
    Dong, Yinlei
    Geng, Daoying
    Zhang, Jun
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (13)
  • [8] LI-RADS® algorithm: CT and MRI
    Victoria Chernyak
    Cynthia S. Santillan
    Demetri Papadatos
    Claude B. Sirlin
    Abdominal Radiology, 2018, 43 : 111 - 126
  • [9] Diagnostic Performance of LI-RADS Version 2018, LI-RADS Version 2017, and OPTN Criteria for Hepatocellular Carcinoma
    Kierans, Andrea S.
    Song, Christopher
    Gavlin, Alexander
    Roudenko, Alexandra
    Lu, Lina
    Askin, Gulce
    Hecht, Elizabeth M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (05) : 1085 - 1092
  • [10] LI-RADS® ancillary features on CT and MRI
    Chernyak, Victoria
    Tang, An
    Flusberg, Milana
    Papadatos, Demetri
    Bijan, Bijan
    Kono, Yuko
    Santillan, Cynthia
    ABDOMINAL RADIOLOGY, 2018, 43 (01) : 82 - 100