A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT

被引:6
|
作者
Hong, Cheng William [1 ,2 ]
Chernyak, Victoria [3 ]
Choi, Jin-Young [4 ]
Lee, Sonia [5 ]
Potu, Chetan [2 ]
Delgado, Timoteo [2 ]
Wolfson, Tanya
Gamst, Anthony
Birnbaum, Jason [6 ]
Kampalath, Rony [5 ]
Lall, Chandana [7 ]
Lee, James T. [8 ]
Owen, Joseph W. [8 ]
Aguirre, Diego A. [9 ]
Mendiratta-Lala, Mishal [10 ]
Davenport, Matthew S. [10 ]
Masch, William [10 ]
Roudenko, Alexandra [11 ]
Lewis, Sara C. [12 ]
Kierans, Andrea Siobhan [13 ]
Hecht, Elizabeth M. [13 ]
Bashir, Mustafa R. [14 ,15 ]
Brancatelli, Giuseppe [16 ]
Douek, Michael L. [17 ]
Ohliger, Michael A. [1 ]
Tang, An [18 ]
Cerny, Milena [18 ]
Fung, Alice [19 ]
Costa, Eduardo A. [20 ]
Corwin, Michael T. [21 ]
McGahan, John P. [21 ]
Kalb, Bobby [22 ]
Elsayes, Khaled M. [23 ]
Surabhi, Venkateswar R. [23 ]
Blair, Katherine [23 ]
Marks, Robert M. [24 ]
Horvat, Natally [3 ,25 ]
Best, Shaun [26 ]
Ash, Ryan [26 ]
Ganesan, Karthik [27 ]
Kagay, Christopher R. [28 ]
Kambadakone, Avinash [29 ]
Wang, Jin [30 ]
Cruite, Irene [31 ]
Bijan, Bijan [32 ]
Goodwin, Mark [33 ]
Cunha, Guilherme Moura [34 ]
Tamayo-Murillo, Dorathy [2 ]
Fowler, Kathryn J. [2 ]
Sirlin, Claude B. [2 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 513 Parnassus Ave,Box 0628, San Francisco, CA 94143 USA
[2] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA USA
[3] Mem Sloan Kettering Canc Ctr, Radiol, New York, NY USA
[4] Yonsei Univ, Dept Radiol, Seoul, South Korea
[5] Univ Calif Irvine, Dept Radiol, Orange, CA USA
[6] Univ Calif San Diego, Computat & Appl Stat Lab, San Diego, CA USA
[7] Univ Florida, Dept Radiol, Jacksonville, FL USA
[8] Univ Kentucky, Dept Radiol, Lexington, KY USA
[9] Fdn Santa Fe Bogota, Dept Radiol, Bogota, Colombia
[10] Univ Michigan, Dept Radiol, Ann Arbor, MI USA
[11] Allegheny Hlth Network, Dept Radiol, Pittsburgh, PA USA
[12] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY USA
[13] New York Presbyterian Weill Cornell Med Ctr, Dept Radiol, New York, NY USA
[14] Duke Univ, Dept Radiol, Med Ctr, New York, NY USA
[15] Duke Univ, Dept Med, Med Ctr, New York, NY USA
[16] Univ Hosp Paolo Giaccone, Sect Radiol, Dept Biomed Neurosci & Adv Diagnost, Palermo, Italy
[17] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA USA
[18] Univ Montreal, Dept Radiol, Radiat Oncol & Nucl Med, Montreal, PQ, Canada
[19] Oregon Hlth & Sci Univ, Dept Radiol, Portland, OR USA
[20] CEDRUL Ctr Diagnost Imagem, Joao Pessoa, Paraiba, Brazil
[21] Univ Calif Davis, Dept Radiol, Sacramento, CA USA
[22] Radiol Ltd, Tucson, AZ USA
[23] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
[24] Naval Med Ctr San Diego, Dept Radiol, San Diego, CA USA
[25] Univ Sao Paulo, Hosp Sirio Libanes, Sao Paulo, Brazil
[26] Univ Kansas, Dept Radiol, Kansas City, KS USA
[27] Sir HN Reliance Fdn Hosp & Res Ctr, Mumbai, India
[28] Calif Pacific Med Ctr, Dept Radiol, San Francisco, CA USA
[29] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[30] Sun Yat Sen Univ, Affiliated Hosp 3, Guangzhou, Peoples R China
[31] Inland Imaging, Spokane, WA USA
[32] Sutter Med Grp, Sacramento, CA USA
[33] Austin Hlth, Melbourne, Vic, Australia
[34] Univ Washington, Dept Radiol, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
DATA SYSTEM; HEPATOCELLULAR-CARCINOMA; DIAGNOSIS;
D O I
10.1148/radiol.222855
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods: This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results: The study population consisted of 484 patients (mean age, 62 years +/- 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P =.03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P =.005), but not for LR-5 (P =.14) or LR-M (P =.94). Conclusion: There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] LI-RADS Version 2017 versus Version 2018: Diagnosis of Hepatocellular Carcinoma on Gadoxetate Disodium enhanced MRI
    Lee, Sang Min
    Lee, Jeong Min
    Ahn, Su Joa
    Kang, Hyo-Jin
    Yang, Hyun Kyung
    Yoon, Jeong Hee
    RADIOLOGY, 2019, 292 (03) : 655 - 663
  • [22] Interreader Reliability of LI-RADS Version 2014 Algorithm and Imaging Features for Diagnosis of Hepatocellular Carcinoma: A Large International Multireader Study
    Fowler, Kathryn J.
    Tang, An
    Santillan, Cynthia
    Bhargavan-Chatfield, Mythreyi
    Heiken, Jay
    Jha, Reena C.
    Weinreb, Jeffrey
    Hussain, Hero
    Mitchell, Donald G.
    Bashir, Mustafa R.
    Costa, Eduardo A. C.
    Cunha, Guilherme M.
    Coombs, Laura
    Wolfson, Tanya
    Gamst, Anthony C.
    Brancatelli, Giuseppe
    Yeh, Benjamin
    Sirlin, Claude B.
    RADIOLOGY, 2018, 286 (01) : 173 - 185
  • [23] 2017 Version of LI-RADS for CT and MR Imaging: An Update
    Elsayes, Khaled M.
    Hooker, Jonathan C.
    Agrons, Michelle M.
    Kielar, Ania Z.
    Tang, An
    Fowler, Kathryn J.
    Chernyak, Victoria
    Bashir, Mustafa R.
    Kono, Yuko
    Do, Richard K.
    Mitchell, Donald G.
    Kamaya, Aya
    Hecht, Elizabeth M.
    Sirlin, Claude B.
    RADIOGRAPHICS, 2017, 37 (07) : 1994 - 2017
  • [24] CT/MRI LI-RADS v2018 vs. CEUS LI-RADS v2017-Can Things Be Put Together?
    Caraiani, Cosmin
    Boca, Bianca
    Bura, Vlad
    Sparchez, Zeno
    Dong, Yi
    Dietrich, Christoph
    BIOLOGY-BASEL, 2021, 10 (05):
  • [25] LI-RADS Version 2018 Treatment Response Algorithm: The Evidence Is Accumulating
    Do, Richard K.
    Mendiratta-Lala, Mishal
    RADIOLOGY, 2020, 294 (02) : 327 - 328
  • [27] Diagnostic Performance of LI-RADS Version 2018 for Primary Liver Cancer in Patients With Liver Cirrhosis on Enhanced MRI
    Liu, Xinai
    Ni, Xiaoyan
    Li, Yubo
    Yang, Chun
    Wang, Yi
    Ma, Chunzheng
    Zhou, Changwu
    Lu, Xin
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [28] CT/MR LI-RADS 2018: clinical implications and management recommendations
    Kamath, Amita
    Roudenko, Alexandra
    Hecht, Elizabeth
    Sirlin, Claude
    Chernyak, Victoria
    Fowler, Kathryn
    Mitchell, Donald G.
    ABDOMINAL RADIOLOGY, 2019, 44 (04) : 1306 - 1322
  • [29] LI-RADS v2018: utilizing ancillary features on gadoxetate-enhanced MRI to modify final LI-RADS category
    Boatright, Christine
    Peterson, Jessica
    Williams, Vanessa L.
    Best, Shaun
    Ash, Ryan
    ABDOMINAL RADIOLOGY, 2020, 45 (10) : 3136 - 3143
  • [30] CT/MR LI-RADS 2018: clinical implications and management recommendations
    Amita Kamath
    Alexandra Roudenko
    Elizabeth Hecht
    Claude Sirlin
    Victoria Chernyak
    Kathryn Fowler
    Donald G. Mitchell
    Abdominal Radiology, 2019, 44 : 1306 - 1322