A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT

被引:6
|
作者
Hong, Cheng William [1 ,2 ]
Chernyak, Victoria [3 ]
Choi, Jin-Young [4 ]
Lee, Sonia [5 ]
Potu, Chetan [2 ]
Delgado, Timoteo [2 ]
Wolfson, Tanya
Gamst, Anthony
Birnbaum, Jason [6 ]
Kampalath, Rony [5 ]
Lall, Chandana [7 ]
Lee, James T. [8 ]
Owen, Joseph W. [8 ]
Aguirre, Diego A. [9 ]
Mendiratta-Lala, Mishal [10 ]
Davenport, Matthew S. [10 ]
Masch, William [10 ]
Roudenko, Alexandra [11 ]
Lewis, Sara C. [12 ]
Kierans, Andrea Siobhan [13 ]
Hecht, Elizabeth M. [13 ]
Bashir, Mustafa R. [14 ,15 ]
Brancatelli, Giuseppe [16 ]
Douek, Michael L. [17 ]
Ohliger, Michael A. [1 ]
Tang, An [18 ]
Cerny, Milena [18 ]
Fung, Alice [19 ]
Costa, Eduardo A. [20 ]
Corwin, Michael T. [21 ]
McGahan, John P. [21 ]
Kalb, Bobby [22 ]
Elsayes, Khaled M. [23 ]
Surabhi, Venkateswar R. [23 ]
Blair, Katherine [23 ]
Marks, Robert M. [24 ]
Horvat, Natally [3 ,25 ]
Best, Shaun [26 ]
Ash, Ryan [26 ]
Ganesan, Karthik [27 ]
Kagay, Christopher R. [28 ]
Kambadakone, Avinash [29 ]
Wang, Jin [30 ]
Cruite, Irene [31 ]
Bijan, Bijan [32 ]
Goodwin, Mark [33 ]
Cunha, Guilherme Moura [34 ]
Tamayo-Murillo, Dorathy [2 ]
Fowler, Kathryn J. [2 ]
Sirlin, Claude B. [2 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 513 Parnassus Ave,Box 0628, San Francisco, CA 94143 USA
[2] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA USA
[3] Mem Sloan Kettering Canc Ctr, Radiol, New York, NY USA
[4] Yonsei Univ, Dept Radiol, Seoul, South Korea
[5] Univ Calif Irvine, Dept Radiol, Orange, CA USA
[6] Univ Calif San Diego, Computat & Appl Stat Lab, San Diego, CA USA
[7] Univ Florida, Dept Radiol, Jacksonville, FL USA
[8] Univ Kentucky, Dept Radiol, Lexington, KY USA
[9] Fdn Santa Fe Bogota, Dept Radiol, Bogota, Colombia
[10] Univ Michigan, Dept Radiol, Ann Arbor, MI USA
[11] Allegheny Hlth Network, Dept Radiol, Pittsburgh, PA USA
[12] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY USA
[13] New York Presbyterian Weill Cornell Med Ctr, Dept Radiol, New York, NY USA
[14] Duke Univ, Dept Radiol, Med Ctr, New York, NY USA
[15] Duke Univ, Dept Med, Med Ctr, New York, NY USA
[16] Univ Hosp Paolo Giaccone, Sect Radiol, Dept Biomed Neurosci & Adv Diagnost, Palermo, Italy
[17] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA USA
[18] Univ Montreal, Dept Radiol, Radiat Oncol & Nucl Med, Montreal, PQ, Canada
[19] Oregon Hlth & Sci Univ, Dept Radiol, Portland, OR USA
[20] CEDRUL Ctr Diagnost Imagem, Joao Pessoa, Paraiba, Brazil
[21] Univ Calif Davis, Dept Radiol, Sacramento, CA USA
[22] Radiol Ltd, Tucson, AZ USA
[23] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
[24] Naval Med Ctr San Diego, Dept Radiol, San Diego, CA USA
[25] Univ Sao Paulo, Hosp Sirio Libanes, Sao Paulo, Brazil
[26] Univ Kansas, Dept Radiol, Kansas City, KS USA
[27] Sir HN Reliance Fdn Hosp & Res Ctr, Mumbai, India
[28] Calif Pacific Med Ctr, Dept Radiol, San Francisco, CA USA
[29] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[30] Sun Yat Sen Univ, Affiliated Hosp 3, Guangzhou, Peoples R China
[31] Inland Imaging, Spokane, WA USA
[32] Sutter Med Grp, Sacramento, CA USA
[33] Austin Hlth, Melbourne, Vic, Australia
[34] Univ Washington, Dept Radiol, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
DATA SYSTEM; HEPATOCELLULAR-CARCINOMA; DIAGNOSIS;
D O I
10.1148/radiol.222855
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods: This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results: The study population consisted of 484 patients (mean age, 62 years +/- 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P =.03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P =.005), but not for LR-5 (P =.14) or LR-M (P =.94). Conclusion: There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] LI-RADS Version 2018 Is of Limited Use in the Diagnosis of Hepatocellular Carcinoma in Children
    Paltiel, Harriet J.
    RADIOLOGY, 2021, 299 (01) : 200 - 201
  • [32] Diagnostic Performance of LI-RADS Version 2018 for Evaluation of Pediatric Hepatocellular Carcinoma
    Khanna, Geetika
    Chavhan, Govind B.
    Schooler, Gary R.
    Fraum, Tyler J.
    Alazraki, Adina L.
    Squires, Judy H.
    Salter, Amber
    Podberesky, Daniel J.
    Towbin, Alexander J.
    RADIOLOGY, 2021, 299 (01) : 190 - 199
  • [33] An update for LI-RADS: Version 2018. Why so soon after version 2017?
    Kielar, Ania Z.
    Chernyak, Victoria
    Bashir, Mustafa R.
    Do, Richard K.
    Fowler, Kathryn J.
    Santillan, Cynthia
    Sirlin, Claude B.
    Mitchell, Donald G.
    Cerny, Milena
    Tang, An
    Elsayes, Khaled M.
    Kamaya, Aya
    Kono, Yuko
    Arora, Sandeep S.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (06) : 1990 - 1991
  • [34] LI-RADS v2018: utilizing ancillary features on gadoxetate-enhanced MRI to modify final LI-RADS category
    Christine Boatright
    Jessica Peterson
    Vanessa L. Williams
    Shaun Best
    Ryan Ash
    Abdominal Radiology, 2020, 45 : 3136 - 3143
  • [35] CT/MRI LI-RADS v2017 - review of the guidelines
    Rosiak, Grzegorz
    Podgorska, Joanna
    Rosiak, Edyta
    Cieszanowski, Andrzej
    POLISH JOURNAL OF RADIOLOGY, 2018, 83 : E355 - E365
  • [36] How to Use LI-RADS to Report Liver CT and MRI Observations
    Cunha, Guilherme M.
    Fowler, Kathryn J.
    Roudenko, Alexandra
    Taouli, Bachir
    Fung, Alice W.
    Elsayes, Khaled M.
    Marks, Robert M.
    Cruite, Irene
    Horvat, Natally
    Chernyak, Victoria
    Sirlin, Claude B.
    Tang, An
    RADIOGRAPHICS, 2021, 41 (05) : 1352 - 1367
  • [37] LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents
    Santillan, Cynthia
    Fowler, Kathryn
    Kono, Yuko
    Chernyak, Victoria
    ABDOMINAL RADIOLOGY, 2018, 43 (01) : 75 - 81
  • [38] LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents
    Cynthia Santillan
    Kathryn Fowler
    Yuko Kono
    Victoria Chernyak
    Abdominal Radiology, 2018, 43 : 75 - 81
  • [39] CT/MRI technical pitfalls for diagnosis and treatment response assessment using LI-RADS and how to optimize
    Kamal, Omar
    Haghshomar, Maryam
    Yang, Jessica
    Lalani, Tasneem
    Bijan, Bijan
    Yaghmai, Vahid
    Mendiratta-Lala, Mishal
    Hong, Cheng William
    Fowler, Kathryn J.
    Sirlin, Claude B.
    Kambadakone, Avinash
    Lee, James
    Borhani, Amir A.
    Fung, Alice
    ABDOMINAL RADIOLOGY, 2024, : 2022 - 2037
  • [40] Analysis of comparative performance of CEUS and CECT/MR LI-RADS classification: Can CEUS dichotomize LI-RADS indeterminate lesions on CT or MRI?
    Tan, Zehao
    Teoh, Wey Chyi
    Wong, Kang Min
    Wansaicheong, Gervais Khin-Lin
    Sandrasegaran, Kumaresan
    CLINICAL IMAGING, 2020, 62 : 63 - 68