LI-RADS Version 2018 Ancillary Features at MRI

被引:92
|
作者
Cerny, Milena [1 ,2 ]
Chernyak, Victoria [3 ]
Olivie, Damien [1 ]
Billiard, Jean-Sebastien [1 ]
Murphy-Lavallee, Jessica [1 ]
Kielar, Ania Z. [4 ]
Elsayes, Khaled M. [5 ]
Bourque, Laurence [1 ]
Hooker, Jonathan C. [6 ]
Sirlin, Claude B. [6 ]
Tang, An [1 ,2 ]
机构
[1] Ctr Hosp Univ Montreal, Dept Radiol, 1000 Rue St Denis, Montreal, PQ H2X 0C2, Canada
[2] Ctr Hosp Univ Montreal, Ctr Rech, Montreal, PQ, Canada
[3] Montefiore Med Ctr, Dept Radiol, 111 E 210th St, Bronx, NY 10467 USA
[4] Univ Ottawa, Dept Radiol, Ottawa, ON, Canada
[5] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, Houston, TX 77030 USA
[6] Univ Calif San Diego, Dept Radiol, San Diego, CA 92103 USA
关键词
SMALL HEPATOCELLULAR-CARCINOMA; ACID-ENHANCED MRI; CHRONIC LIVER-DISEASE; APPARENT DIFFUSION-COEFFICIENT; DATA SYSTEM V2014; HEPATOBILIARY-PHASE; CIRRHOTIC LIVER; SIGNAL-INTENSITY; DYSPLASTIC NODULES; HEPATIC HEMANGIOMAS;
D O I
10.1148/rg.2018180052
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The Liver Imaging Reporting and Data System (LI-RADS) standardizes performance of liver imaging in patients at risk for hepatocellular carcinoma (HCC) as well as interpretation and reporting of the results. Developed by experts in liver imaging and supported by the American College of Radiology, LI-RADS assigns to observations categories that reflect the relative probability of benignity, HCC, or other malignancy. While category assignment is based mainly on major imaging features, ancillary features may be applied to improve detection and characterization, increase confidence, or adjust LI-RADS categories. Ancillary features are classified as favoring malignancy in general, HCC in particular, or benignity. Those favoring malignancy in general or HCC in particular may be used to upgrade by a maximum of one category up to LR-4; those favoring benignity may be used to downgrade by a maximum of one category. If there are conflicting ancillary features (ie, one or more favoring malignancy and one or more favoring benignity), the category should not be adjusted. Ancillary features may be seen at diagnostic CT, MRI performed with extracellular agents, or MRI performed with hepatobiliary agents, with the exception of one ancillary feature assessed at US. This article focuses on LI-RADS version 2018 ancillary features seen at MRI. Specific topics include rules for ancillary feature application; definitions, rationale, and illustrations with clinical MRI examples; summary of evidence and diagnostic performance; pitfalls; and future directions. (C) RSNA, 2018
引用
收藏
页码:1973 / 2001
页数:29
相关论文
共 50 条
  • [1] MRI LI-RADS Version 2018: Impact of and Reduction in Ancillary Features
    van der Pol, Christian B.
    Dhindsa, Kiret
    Shergill, Ravi
    Zha, Nanxi
    Ferri, Melanie
    Kagoma, Yoan K.
    Lee, Stefanie Y.
    Satkunasingham, Janakan
    Wat, Josephine
    Tsai, Scott
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 216 (04) : 935 - 942
  • [2] LI-RADS® ancillary features on CT and MRI
    Chernyak, Victoria
    Tang, An
    Flusberg, Milana
    Papadatos, Demetri
    Bijan, Bijan
    Kono, Yuko
    Santillan, Cynthia
    ABDOMINAL RADIOLOGY, 2018, 43 (01) : 82 - 100
  • [3] LI-RADS® ancillary features on CT and MRI
    Victoria Chernyak
    An Tang
    Milana Flusberg
    Demetri Papadatos
    Bijan Bijan
    Yuko Kono
    Cynthia Santillan
    Abdominal Radiology, 2018, 43 : 82 - 100
  • [4] LI-RADS v2018: utilizing ancillary features on gadoxetate-enhanced MRI to modify final LI-RADS category
    Boatright, Christine
    Peterson, Jessica
    Williams, Vanessa L.
    Best, Shaun
    Ash, Ryan
    ABDOMINAL RADIOLOGY, 2020, 45 (10) : 3136 - 3143
  • [5] LI-RADS v2018: utilizing ancillary features on gadoxetate-enhanced MRI to modify final LI-RADS category
    Christine Boatright
    Jessica Peterson
    Vanessa L. Williams
    Shaun Best
    Ryan Ash
    Abdominal Radiology, 2020, 45 : 3136 - 3143
  • [6] A Deeper Look into Ancillary Features in LI-RADS Classification
    Crivellaro, Priscila
    RADIOLOGY, 2024, 310 (02)
  • [7] Diagnostic Performance of LI-RADS Version 2018, LI-RADS Version 2017, and OPTN Criteria for Hepatocellular Carcinoma
    Kierans, Andrea S.
    Song, Christopher
    Gavlin, Alexander
    Roudenko, Alexandra
    Lu, Lina
    Askin, Gulce
    Hecht, Elizabeth M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (05) : 1085 - 1092
  • [8] A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT
    Hong, Cheng William
    Chernyak, Victoria
    Choi, Jin-Young
    Lee, Sonia
    Potu, Chetan
    Delgado, Timoteo
    Wolfson, Tanya
    Gamst, Anthony
    Birnbaum, Jason
    Kampalath, Rony
    Lall, Chandana
    Lee, James T.
    Owen, Joseph W.
    Aguirre, Diego A.
    Mendiratta-Lala, Mishal
    Davenport, Matthew S.
    Masch, William
    Roudenko, Alexandra
    Lewis, Sara C.
    Kierans, Andrea Siobhan
    Hecht, Elizabeth M.
    Bashir, Mustafa R.
    Brancatelli, Giuseppe
    Douek, Michael L.
    Ohliger, Michael A.
    Tang, An
    Cerny, Milena
    Fung, Alice
    Costa, Eduardo A.
    Corwin, Michael T.
    McGahan, John P.
    Kalb, Bobby
    Elsayes, Khaled M.
    Surabhi, Venkateswar R.
    Blair, Katherine
    Marks, Robert M.
    Horvat, Natally
    Best, Shaun
    Ash, Ryan
    Ganesan, Karthik
    Kagay, Christopher R.
    Kambadakone, Avinash
    Wang, Jin
    Cruite, Irene
    Bijan, Bijan
    Goodwin, Mark
    Cunha, Guilherme Moura
    Tamayo-Murillo, Dorathy
    Fowler, Kathryn J.
    Sirlin, Claude B.
    RADIOLOGY, 2023, 307 (05)
  • [9] LI-RADS ancillary features on contrast-enhanced ultrasonography
    Dietrich, Christoph F.
    Dong, Yi
    Kono, Yuko
    Caraiani, Cosmin
    Sirlin, Claude B.
    Cui, Xin-Wu
    Tang, An
    ULTRASONOGRAPHY, 2020, 39 (03) : 221 - 228
  • [10] LI-RADS Nonradiation Treatment Response Algorithm Version 2024: Diagnostic Performance and Impact of Ancillary Features
    Zhou, Shuwei
    Zhou, Guofeng
    Shen, Yang
    Xia, Tianyi
    Zhao, Ben
    Sun, Ziying
    Gao, Lei
    Li, Binrong
    Wang, Weilang
    Zhang, Shuhang
    Opara, Noble C.
    Chen, Xunjun
    Ju, Shenghong
    Wang, Yuan-Cheng
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2025, 224 (02)