IntroductionEstimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images.MethodsA total of 1309 patients with cognitive impairment scanned with [C-11]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used for evaluation.ResultsThe prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader's classification with 99% accuracy. There was a high correlation between reference and predicted SUVR (R-2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status.ConclusionThe proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline.
机构:
Univ Fukui, Biomed Imaging Res Ctr, Eiheiji 9101193, Japan
Univ Fukui, Dept Adv Med Community Healthcare, Fac Med Sci, Fukui 9101193, JapanUniv Fukui, Biomed Imaging Res Ctr, Eiheiji 9101193, Japan
Ikawa, Masamichi
论文数: 引用数:
h-index:
机构:
Tsujikawa, Tetsuya
论文数: 引用数:
h-index:
机构:
Makino, Akira
Mori, Tetsuya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fukui, Biomed Imaging Res Ctr, Eiheiji 9101193, JapanUniv Fukui, Biomed Imaging Res Ctr, Eiheiji 9101193, Japan
Mori, Tetsuya
论文数: 引用数:
h-index:
机构:
Kiyono, Yasushi
Kosaka, Hirotaka
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fukui, Dept Neuropsychiat, Fac Med Sci, Fukui 9101193, JapanUniv Fukui, Biomed Imaging Res Ctr, Eiheiji 9101193, Japan
机构:
Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Andrade, M. A.
Borelli, W. V.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Borelli, W. V.
Araujo, A. S.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Araujo, A. S.
Matushita, C. S.
论文数: 0引用数: 0
h-index: 0
机构:
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Matushita, C. S.
Hartmann, L. M.
论文数: 0引用数: 0
h-index: 0
机构:
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Hartmann, L. M.
Marques da Silva, A.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Marques da Silva, A.
da Costa, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
Brain Inst Rio Grande Sul, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil