Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging

被引:2
|
作者
Ladefoged, Claes Nohr [1 ]
Anderberg, Lasse [1 ]
Madsen, Karine [1 ]
Henriksen, Otto Molby [1 ]
Hasselbalch, Steen Gregers [2 ]
Andersen, Flemming Littrup [1 ]
Hojgaard, Liselotte [1 ]
Law, Ian [1 ]
机构
[1] Univ Copenhagen, Dept Clin Physiol & Nucl Med, Rigshosp, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Danish Dementia Res Ctr, Rigshosp, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
关键词
AI; Alzheimer's disease; Amyloid; Automatic diagnosis; Convolutional neural network; Decision support; Deep learning; Dementia; PET; Stratification;
D O I
10.1186/s40658-023-00562-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
IntroductionEstimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images.MethodsA total of 1309 patients with cognitive impairment scanned with [C-11]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used for evaluation.ResultsThe prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader's classification with 99% accuracy. There was a high correlation between reference and predicted SUVR (R-2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status.ConclusionThe proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] PET Amyloid Ligand [11C]PIB Uptake and Cerebrospinal Fluid β-Amyloid in Mild Cognitive Impairment
    Koivunen, J.
    Pirttilae, T.
    Kemppainen, N.
    Aalto, S.
    Herukka, S. -K.
    Jauhianen, A. M.
    Haenninen, T.
    Hallikainen, M.
    Nagren, K.
    Rinne, J. O.
    Soininen, H.
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2008, 26 (04) : 378 - 383
  • [22] Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study
    Edison, Paul
    Archer, Hilary A.
    Gerhard, Alexander
    Hinz, Rainer
    Pavese, Nicola
    Turkheimer, Federico E.
    Hammers, Alexander
    Tai, Yen Fong
    Fox, Nick
    Kennedy, Angus
    Rossor, Martin
    Brooks, David J.
    NEUROBIOLOGY OF DISEASE, 2008, 32 (03) : 412 - 419
  • [23] [11C]PIB PET Is Associated with the Brain Biopsy Amyloid-β Load in Subjects Examined for Normal Pressure Hydrocephalus
    Rinne, Juha O.
    Suotunen, Timo
    Rummukainen, Jaana
    Herukka, Sanna-Kaisa
    Nerg, Ossi
    Koivisto, Anne M.
    Rauramaa, Tuomas
    Nagren, Kjell
    Hiltunen, Mikko
    Alafuzoff, Irina
    Rinne, Jaakko
    Jaaskelainen, Juha E.
    Soininen, Hilkka
    Leinonen, Ville
    JOURNAL OF ALZHEIMERS DISEASE, 2019, 67 (04) : 1343 - 1351
  • [24] Imaging brain amyloid in AD using the novel PET tracer, PIB
    Klunk, W
    Wang, YM
    Mathis, C
    NEUROBIOLOGY OF AGING, 2004, 25 : S15 - S15
  • [25] Amyloid imaging in Lewy body dementia with 11C-PIB-PET
    Rowe, CC
    Ackermann, U
    Gong, S
    Pike, KE
    Novakovic, KE
    Savage, G
    Ng, S
    Mathis, CA
    Masters, CL
    Villemagne, VL
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2005, 238 : S99 - S99
  • [26] PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB
    Faria, Daniele de Paula
    Copray, Sjef
    Sijbesma, Jurgen W. A.
    Willemsen, Antoon T. M.
    Buchpiguel, Carlos A.
    Dierckx, Rudi A. J. O.
    de Vries, Erik F. J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (05) : 995 - 1003
  • [27] PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB
    Daniele de Paula Faria
    Sjef Copray
    Jurgen W. A. Sijbesma
    Antoon T. M. Willemsen
    Carlos A. Buchpiguel
    Rudi A. J. O. Dierckx
    Erik F. J. de Vries
    European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 : 995 - 1003
  • [28] [11C]PiB Brain Retention is not Affected by Antibody Binding to Amyloid-Beta
    Syvanen, S.
    Xiong, M.
    Dahlen, A.
    Roshanbin, S.
    Wik, E.
    Aguilar, X.
    Eriksson, J.
    Sehlin, D.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S437 - S437
  • [29] Correction for partial volume effect in quantification of amyloid β plaque with [11C]PIB PET.
    Matsubara, Keisuke
    Ikoma, Yoko
    Ibaraki, Masanobu
    Shimada, Hitoshi
    Suhara, Tetsuya
    Kinoshita, Toshibumi
    Ito, Hiroshi
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [30] Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB
    Hiroshi Ito
    Hitoshi Shinotoh
    Hitoshi Shimada
    Michie Miyoshi
    Kazuhiko Yanai
    Nobuyuki Okamura
    Harumasa Takano
    Hidehiko Takahashi
    Ryosuke Arakawa
    Fumitoshi Kodaka
    Maiko Ono
    Yoko Eguchi
    Makoto Higuchi
    Toshimitsu Fukumura
    Tetsuya Suhara
    European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 : 745 - 754