Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging

被引:2
|
作者
Ladefoged, Claes Nohr [1 ]
Anderberg, Lasse [1 ]
Madsen, Karine [1 ]
Henriksen, Otto Molby [1 ]
Hasselbalch, Steen Gregers [2 ]
Andersen, Flemming Littrup [1 ]
Hojgaard, Liselotte [1 ]
Law, Ian [1 ]
机构
[1] Univ Copenhagen, Dept Clin Physiol & Nucl Med, Rigshosp, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Danish Dementia Res Ctr, Rigshosp, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
关键词
AI; Alzheimer's disease; Amyloid; Automatic diagnosis; Convolutional neural network; Decision support; Deep learning; Dementia; PET; Stratification;
D O I
10.1186/s40658-023-00562-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
IntroductionEstimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images.MethodsA total of 1309 patients with cognitive impairment scanned with [C-11]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used for evaluation.ResultsThe prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader's classification with 99% accuracy. There was a high correlation between reference and predicted SUVR (R-2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status.ConclusionThe proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Parent fraction estimation methods for improved dynamic [11C]PiB PET quantification
    Stam, M. K.
    Golla, S.
    Yaqub, M.
    Tolboom, N.
    van Berckel, B. N.
    Lammertsma, A. A.
    Boellaard, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S300 - S301
  • [32] [11C]PiB PET and post-mortem measures of amyloid load: regional correspondence
    Price, Julie C.
    Klunk, William E.
    Mathis, Chester A.
    Abrahamson, Eric E.
    Weissfeld, Lisa A.
    Lopez, Oscar L.
    Debnath, Manik L.
    Li, Shao
    Hamilton, Ronald L.
    Ikonomovic, Milos D.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 : S38 - S39
  • [33] Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C] PIB
    Ito, Hiroshi
    Shinotoh, Hitoshi
    Shimada, Hitoshi
    Miyoshi, Michie
    Yanai, Kazuhiko
    Okamura, Nobuyuki
    Takano, Harumasa
    Takahashi, Hidehiko
    Arakawa, Ryosuke
    Kodaka, Fumitoshi
    Ono, Maiko
    Eguchi, Yoko
    Higuchi, Makoto
    Fukumura, Toshimitsu
    Suhara, Tetsuya
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (04) : 745 - 754
  • [34] Impact of image processing on [11C]PIB amyloid quantification
    Kolinger, G. D.
    Garcia, D. Vallez
    Reesink, F. E.
    Dierckz, R. A. J. O.
    De Deyn, P. P.
    Boellaard, R.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 : 111 - 112
  • [35] 11C-PiB PET Imaging of Encephalopathy Associated with Cerebral Amyloid Angiopathy
    Sengoku, Renpei
    Matsushima, Satoshi
    Murakami, Yoshitake
    Fukuda, Takahiro
    Tokumaru, Aya M.
    Hashimoto, Masaya
    Suzuki, Masahiko
    Ishiwata, Kiichi
    Ishii, Kenji
    Mochio, Soichiro
    INTERNAL MEDICINE, 2014, 53 (17) : 1997 - 2000
  • [36] Amyloid Imaging in aged and young macaques with [11C]PIB and [18F]FDDNP
    Noda, Akihiro
    Murakami, Yoshihiro
    Nishiyama, Shingo
    Fukumoto, Dai
    Miyoshi, Sosuike
    Tsukada, Hideo
    Nishimura, Shintaro
    SYNAPSE, 2008, 62 (06) : 472 - 475
  • [37] MR-Less Surface-Based Amyloid Assessment Based on 11C PiB PET
    Zhou, Luping
    Salvado, Olivier
    Dore, Vincent
    Bourgeat, Pierrick
    Raniga, Parnesh
    Macaulay, S. Lance
    Ames, David
    Masters, Colin L.
    Ellis, Kathryn A.
    Villemagne, Victor L.
    Rowe, Christopher C.
    Fripp, Jurgen
    PLOS ONE, 2014, 9 (01):
  • [38] Amyloid Pet imaging with 11C-PIB in two patients with cognitive impairment
    Ortega-Nava, F.
    Martinez-Rodriguez, I.
    De Arcocha-Torres, M.
    Rodriguez, E.
    Mateo, I.
    Carril, J. M.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR, 2012, 31 (01): : 40 - 41
  • [39] Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease
    Kemppainen, N. M.
    Aalto, S.
    Wilson, I. A.
    Nagren, K.
    Helin, S.
    Bruck, A.
    Oikonen, V.
    Kailajarvi, M.
    Scheinin, M.
    Viitanen, M.
    Parkkola, R.
    Rinne, J. O.
    NEUROLOGY, 2006, 67 (09) : 1575 - 1580
  • [40] Increased [11C]PIB-PET levels in inclusion body myositis are indicative of amyloid β deposition
    Maetzler, Walter
    Reimold, Matthias
    Schittenhelm, Jens
    Vorgerd, Matthias
    Bornemann, Antje
    Koetter, Ina
    Pfannenberg, Christina
    Reischl, Gerald
    Schoels, Ludger
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2011, 82 (09): : 1060 - +