Experimental study on the bottom liquid cooling thermal management system for lithium-ion battery based on multichannel flat tube

被引:33
|
作者
Ren, Ruyang [1 ]
Zhao, Yaohua [1 ,2 ,4 ]
Diao, Yanhua [1 ]
Liang, Lin [3 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient T, Beijing 100124, Peoples R China
[2] Zibo Boienergy Sci & Technol Co Ltd, Shandong 255000, Peoples R China
[3] Yanshan Univ, Hebei Prov Low Carbon & Clean Bldg Heating Technol, Sch Civil Engn & Mech, Qinhuangdao 066004, Peoples R China
[4] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient T, 100 Pingleyuan, Beijing 100124, Peoples R China
关键词
Lithium -ion battery; Thermal management system; Multichannel flat tube; Bottom liquid cooling; SAFETY ASSESSMENT; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.applthermaleng.2022.119636
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal management system (TMS) plays an important role in reducing the battery module's temperature rise and ensuring temperature uniformity. In this study, a bottom liquid cooling (BLC) TMS based on multichannel flat tube (MCFT) is established. The temperature distribution of the battery module under the BLC method is analyzed through comparative experiments with the passive cooling method. Then, the influence of cold water flow rate and cold water inlet temperature variation on thermal management performance are studied. Results show that the BLC TMS based on MCFT can effectively reduce the temperature rise of the battery module without considerably reducing the temperature uniformity of the module. The increase in the cold water flow rate slightly influences the thermal management performance of the battery module, the change in the module's maximum temperature is only 1.4%. However, the change in the cold water inlet temperature considerably influences the thermal management performance of the battery module. The temperature of the battery module can be maintained below 45 degrees C by decreasing the cold water inlet temperature, but the temperature difference of the battery and module levels are increased by 48.9% and 61.6%, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Numerical study on thermal behavior and a liquid cooling strategy for lithium-ion battery
    Xu, Wenjun
    Hu, Peng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7645 - 7659
  • [22] A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety
    Li, Xiutao
    Zhou, Zhenyang
    Zhang, Mengjie
    Zhang, Feng
    Zhou, Xiaomeng
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [23] Optimization of the Heat Dissipation Performance of a Lithium-Ion Battery Thermal Management System with CPCM/Liquid Cooling
    Zeng, Xiaoping
    Men, Zhengxing
    Deng, Fang
    Chen, Cheng
    MATERIALS, 2022, 15 (11)
  • [24] Lightweight liquid cooling based thermal management to a prismatic hard-cased lithium-ion battery
    Sheng, Lei
    Zhang, Hengyun
    Zhang, Hua
    Su, Lin
    Zhang, Zhendong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 170
  • [25] Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Hu, Chengzhi
    Gao, Linsong
    Liu, Xinyu
    Li, Yubai
    Song, Yongchen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [26] Thermal management for the prismatic lithium-ion battery pack by immersion cooling with Fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Wei, Lei
    Hu, Chengzhi
    Liu, Xinyu
    Gao, Shuai
    Li, Yubai
    Song, Yongchen
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [27] Simulation and Optimization of Lithium-Ion Battery Thermal Management System Integrating Composite Phase Change Material, Flat Heat Pipe and Liquid Cooling
    Xin, Qianqian
    Yang, Tianqi
    Zhang, Hengyun
    Zeng, Juan
    Xiao, Jinsheng
    BATTERIES-BASEL, 2023, 9 (06):
  • [28] Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling
    Yang, Wen
    Zhou, Fei
    Zhou, Haobing
    Wang, Qianzhi
    Kong, Jizhou
    APPLIED THERMAL ENGINEERING, 2020, 175
  • [29] Study on Battery Management System and Lithium-ion Battery
    Li Siguang
    Zhang Chengning
    2009 INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, PROCEEDINGS, 2009, : 218 - 222
  • [30] Numerical Simulation of Immersed Liquid Cooling System for Lithium-Ion Battery Thermal Management System of New Energy Vehicles
    Fu, Ping
    Fang, Liwei
    Jiao, Shouyi
    Sun, Jian
    Xin, Zhicheng
    ENERGIES, 2023, 16 (22)