Thermal management for the prismatic lithium-ion battery pack by immersion cooling with Fluorinated liquid

被引:1
|
作者
Li, Yang [1 ]
Bai, Minli [1 ]
Zhou, Zhifu [2 ]
Wu, Wei-Tao [3 ]
Wei, Lei [4 ]
Hu, Chengzhi [1 ]
Liu, Xinyu [1 ]
Gao, Shuai [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management; Lithium-ion battery; Liquid immersion cooling; Energy density; Two-phase heat transfer; PERFORMANCE; SYSTEM; DEGRADATION; CONVECTION; ISSUES; MODEL; CYCLE; LIFE; CELL;
D O I
10.1016/j.applthermaleng.2024.124453
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study constructs a novel FS49-based battery thermal management system (BTMS), proposing an optimization method for the system energy density and an indirect control method for the system cooling capacity. The boiling of dielectric refrigerant occurred at the battery surface, which provided strong and uniform cooling for each battery cell. The results show that the peak temperature difference of liquid immersion cooling (LIC) module during 1C rate discharging and charging was reduced by 91.3% and 94.44%, respectively, compared to the natural convection (NC) module. The reduction of temperature nonuniformity greatly reduced the state of charge (SOC) inhomogeneity of different cells within the module. Moreover, the energy density of LIC module can be optimized by reducing the cell spacing and liquid filling ratio. Comparing with 100% filling rate, the module maximum temperature corresponding to 25% filling rate (with wick) during 2C rate discharging is only increased by 1.6degree celsius, however, the module peak temperature difference is reduced by 53.3%, and the energy density is increased by 13.14%. In addition, Equivalent circuit model (ECM) and volume of fluid (VOF) model were used to simulate the LIC module, and the numerical results are in good agreement with the experimental data. This study provides a systematic design plan and numerical method for the engineering application of LIC in the field of BTMS.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Hu, Chengzhi
    Gao, Linsong
    Liu, Xinyu
    Li, Yubai
    Song, Yongchen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [2] Thermal Management of Lithium-ion Battery Pack with Liquid Cooling
    Saw, L. H.
    Tay, A. A. O.
    Zhang, L. Winston
    2015 31ST ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELING & MANAGEMENT SYMPOSIUM (SEMI-THERM), 2015, : 298 - 302
  • [3] Effective Heat Dissipation for Prismatic Lithium-ion Battery by Fluorinated Liquid Immersion Cooling Approach
    Li, Yang
    Bai, Minli
    Gao, Linsong
    Yang, Yunjie
    Li, Yulong
    Li, Yubai
    Song, Yongchen
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (02) : 244 - 255
  • [4] A novel pulse liquid immersion cooling strategy for Lithium-ion battery pack
    Gao, Qiang
    Lu, Yue
    Liu, Xiangdong
    Chen, Yongping
    ENERGY, 2024, 310
  • [5] Study on Thermal Equilibrium of Lithium-Ion Battery Pack with Liquid Cooling
    Du W.
    Gu L.
    Zhang Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2023, 43 (03): : 289 - 296
  • [6] Thermal Management of Air-Cooling Lithium-Ion Battery Pack
    Du, Jianglong
    Tao, Haolan
    Chen, Yuxin
    Yuan, Xiaodong
    Lian, Cheng
    Liu, Honglai
    CHINESE PHYSICS LETTERS, 2021, 38 (11)
  • [7] Thermal Management of Air-Cooling Lithium-Ion Battery Pack
    杜江龙
    陶浩兰
    陈育新
    袁小冬
    练成
    刘洪来
    Chinese Physics Letters, 2021, 38 (11) : 122 - 135
  • [8] Thermal management scheme and optimization of cylindrical lithium-ion battery pack based on air cooling and liquid cooling
    Xin, Shiji
    Wang, Chun
    Xi, Huan
    APPLIED THERMAL ENGINEERING, 2023, 224
  • [9] Lightweight liquid cooling based thermal management to a prismatic hard-cased lithium-ion battery
    Sheng, Lei
    Zhang, Hengyun
    Zhang, Hua
    Su, Lin
    Zhang, Zhendong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 170
  • [10] Lithium-ion pack thermal modeling and evaluation of indirect liquid cooling for electric vehicle battery thermal management
    Chacko, S.
    Charmer, S.
    INNOVATIONS IN FUEL ECONOMY AND SUSTAINABLE ROAD TRANSPORT, 2011, : 13 - 21