Experimental study on the bottom liquid cooling thermal management system for lithium-ion battery based on multichannel flat tube

被引:33
|
作者
Ren, Ruyang [1 ]
Zhao, Yaohua [1 ,2 ,4 ]
Diao, Yanhua [1 ]
Liang, Lin [3 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient T, Beijing 100124, Peoples R China
[2] Zibo Boienergy Sci & Technol Co Ltd, Shandong 255000, Peoples R China
[3] Yanshan Univ, Hebei Prov Low Carbon & Clean Bldg Heating Technol, Sch Civil Engn & Mech, Qinhuangdao 066004, Peoples R China
[4] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient T, 100 Pingleyuan, Beijing 100124, Peoples R China
关键词
Lithium -ion battery; Thermal management system; Multichannel flat tube; Bottom liquid cooling; SAFETY ASSESSMENT; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.applthermaleng.2022.119636
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal management system (TMS) plays an important role in reducing the battery module's temperature rise and ensuring temperature uniformity. In this study, a bottom liquid cooling (BLC) TMS based on multichannel flat tube (MCFT) is established. The temperature distribution of the battery module under the BLC method is analyzed through comparative experiments with the passive cooling method. Then, the influence of cold water flow rate and cold water inlet temperature variation on thermal management performance are studied. Results show that the BLC TMS based on MCFT can effectively reduce the temperature rise of the battery module without considerably reducing the temperature uniformity of the module. The increase in the cold water flow rate slightly influences the thermal management performance of the battery module, the change in the module's maximum temperature is only 1.4%. However, the change in the cold water inlet temperature considerably influences the thermal management performance of the battery module. The temperature of the battery module can be maintained below 45 degrees C by decreasing the cold water inlet temperature, but the temperature difference of the battery and module levels are increased by 48.9% and 61.6%, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct
    Zhou, Haobing
    Zhou, Fei
    Zhang, Qian
    Wang, Qianzhi
    Song, Zebin
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [42] Heat Dissipation Analysis on the Liquid Cooling System Coupled with a Flat Heat Pipe of a Lithium-Ion Battery
    Mei, Nan
    Xu, Xiaoming
    Li, Renzheng
    ACS OMEGA, 2020, 5 (28): : 17431 - 17441
  • [43] Hybrid cooling-based lithium-ion battery thermal management for electric vehicles
    Lalan K. Singh
    Anoop K. Gupta
    Environment, Development and Sustainability, 2023, 25 : 3627 - 3648
  • [44] Hybrid cooling-based lithium-ion battery thermal management for electric vehicles
    Singh, Lalan K.
    Gupta, Anoop K.
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (04) : 3627 - 3648
  • [45] Thermal Management of Air-Cooling Lithium-Ion Battery Pack
    Du, Jianglong
    Tao, Haolan
    Chen, Yuxin
    Yuan, Xiaodong
    Lian, Cheng
    Liu, Honglai
    CHINESE PHYSICS LETTERS, 2021, 38 (11)
  • [46] Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling
    Feng, Liyuan
    Zhou, Shuo
    Li, Yancheng
    Wang, Yao
    Zhao, Qiang
    Luo, Chunhui
    Wang, Guixin
    Yan, Kangping
    JOURNAL OF ENERGY STORAGE, 2018, 16 : 84 - 92
  • [47] Thermal Management of Air-Cooling Lithium-Ion Battery Pack
    杜江龙
    陶浩兰
    陈育新
    袁小冬
    练成
    刘洪来
    Chinese Physics Letters, 2021, 38 (11) : 122 - 135
  • [48] Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling
    Qian, Zhen
    Li, Yimin
    Rao, Zhonghao
    ENERGY CONVERSION AND MANAGEMENT, 2016, 126 : 622 - 631
  • [49] Simulation study of lithium-ion battery thermal management system based on a variable flow velocity method with liquid metal
    Liu, Zhengyu
    Wang, Hao
    Yang, Chao
    Zhao, Jingjie
    APPLIED THERMAL ENGINEERING, 2020, 179 (179)
  • [50] Impact of Aerogel Barrier on Liquid-Cooled Lithium-Ion Battery Thermal Management System's Cooling Efficiency
    Zeng, Keyi
    Zhang, Ying
    Tian, Liyu
    Lai, Zengyan
    Zhu, Liang
    Ma, Chuyuan
    ENERGY TECHNOLOGY, 2024, 12 (11)