TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
|
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] ST_VISIONS: A Python']Python Library for Interactive Visualization of Spatio-temporal Data
    Tritsarolis, Andreas
    Doulkeridis, Christos
    Pelekis, Nikos
    Theodoridis, Yannis
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 244 - 247
  • [2] PyDTS: A Python']Python Toolkit for Deep Learning Time Series Modelling
    Schirmer, Pascal A.
    Mporas, Iosif
    ENTROPY, 2024, 26 (04)
  • [3] STMETRICS: A PYTHON']PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
    Soares, Anderson R.
    Bendini, Hugo N.
    Vaz, Daiane V.
    Uehara, Tatiana D. T.
    Neves, Alana K.
    Lechler, Sarah
    Korting, Thales S.
    Fonseca, Leila M. G.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2061 - 2064
  • [4] Probabilistic Feature Extraction from Multivariate Time Series Using Spatio-Temporal Constraints
    Lewandowski, Michal
    Makris, Dimitrios
    Nebel, Jean-Christophe
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6635 : 173 - 184
  • [5] Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package)
    Christ, Maximilian
    Braun, Nils
    Neuffer, Julius
    Kempa-Liehr, Andreas W.
    NEUROCOMPUTING, 2018, 307 : 72 - 77
  • [6] Deeptime: a Python']Python library for machine learning dynamical models from time series data
    Hoffmann, Moritz
    Scherer, Martin
    Hempel, Tim
    Mardt, Andreas
    de Silva, Brian
    Husic, Brooke E.
    Klus, Stefan
    Wu, Hao
    Kutz, Nathan
    Brunton, Steven L.
    Noe, Frank
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (01):
  • [7] FEATURE EXTRACTION USING PCA FOR VHR SATELLITE IMAGE TIME SERIES SPATIO-TEMPORAL CLASSIFICATION
    Rejichi, S.
    Chaabane, F.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 485 - 488
  • [8] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [9] Creation of time series models based on deep learning for generation of probabilistic forecasts using GluonTS and Python']Python
    Cancino-Villatoro, Karina
    Solis, Alfredo Castillo
    Castillo-Estrada, Christian
    Juarez-Ramirez, Reyes
    2023 11TH INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING RESEARCH AND INNOVATION, CONISOFT 2023, 2023, : 265 - 274
  • [10] TSARNet :Integrated spatio-temporal attention mechanism for multivariate time series prediction deep learning framework
    Pan, Xiaoying
    Wang, Hao
    Sun, Jia
    Mu, Yaya
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 97 - 101