On large partial ovoids of symplectic and Hermitian polar spaces

被引:0
|
作者
Ceria, Michela [1 ]
De Beule, Jan [2 ,3 ]
Pavese, Francesco [1 ]
Smaldore, Valentino [4 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
关键词
Hermitian polar space; partial ovoid; symplectic polar space; MAXIMAL PARTIAL OVOIDS; PARTIAL SPREADS;
D O I
10.1002/jcd.21864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [41] A characterization of m-ovoids and i-tight sets of polar spaces
    De Bruyn, Bart
    ADVANCES IN GEOMETRY, 2008, 8 (03) : 367 - 375
  • [42] Polar supermultiplets, hermitian symmetric spaces and hyperkahler metrics
    Arai, Masato
    Kuzenko, Sergei M.
    Lindstroem, Ulf
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [43] On the Grassmann-embeddings of the hermitian dual polar spaces
    De Bruyn, Bart
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 665 - 677
  • [44] Ovoids of parabolic spaces
    Penttila, T
    Williams, B
    GEOMETRIAE DEDICATA, 2000, 82 (1-3) : 1 - 19
  • [45] Ovoids of Parabolic Spaces
    Tim Penttila
    Blair Williams
    Geometriae Dedicata, 2000, 82 : 1 - 19
  • [46] The Hermitian ovoids of Cossidente, Ebert, Marino, Siciliano
    Johnson, Norman L.
    NOTE DI MATEMATICA, 2007, 27 (01): : 61 - 75
  • [47] Shult sets and translation ovoids of the Hermitian surface
    Cossidente, A.
    Ebert, G. L.
    Marino, G.
    Siciliano, Alessandro
    ADVANCES IN GEOMETRY, 2006, 6 (04) : 523 - 542
  • [48] A Geometric Construction for Some Ovoids of the Hermitian Surface
    Giuzzi, Luca
    RESULTS IN MATHEMATICS, 2006, 49 (1-2) : 81 - 88
  • [49] Some non-existence results on m-ovoids in classical polar spaces
    De Beule, Jan
    Mannaert, Jonathan
    Smaldore, Valentino
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [50] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Tao Feng
    Weicong Li
    Ran Tao
    Science China(Mathematics), 2024, 67 (03) : 683 - 712