On large partial ovoids of symplectic and Hermitian polar spaces

被引:0
|
作者
Ceria, Michela [1 ]
De Beule, Jan [2 ,3 ]
Pavese, Francesco [1 ]
Smaldore, Valentino [4 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
关键词
Hermitian polar space; partial ovoid; symplectic polar space; MAXIMAL PARTIAL OVOIDS; PARTIAL SPREADS;
D O I
10.1002/jcd.21864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [31] Symplectic Dirac operators on Hermitian symmetric spaces
    Brasch, Steffen
    Habermann, Katharina
    Habermann, Lutz
    MANUSCRIPTA MATHEMATICA, 2009, 130 (03) : 295 - 310
  • [32] Symplectic Dirac operators on Hermitian symmetric spaces
    Steffen Brasch
    Katharina Habermann
    Lutz Habermann
    manuscripta mathematica, 2009, 130 : 295 - 310
  • [33] Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to F2
    De Bruyn, Bart
    Pasini, Antonio
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [34] New Non-Existence Proofs for Ovoids of Hermitian Polar Spaces and Hyperbolic Quadrics (vol 21, pg 25, 2017)
    Bamberg, J.
    De Beule, J.
    Ihringer, F.
    ANNALS OF COMBINATORICS, 2021, 25 (04) : 1095 - 1097
  • [35] Tight sets and m-ovoids of finite polar spaces
    Bamberg, John
    Kelly, Shane
    Law, Maska
    Penttila, Tim
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (07) : 1293 - 1314
  • [36] A classification of transitive ovoids, spreads, and m-systems of polar spaces
    Bamberg, John
    Penttila, Tim
    FORUM MATHEMATICUM, 2009, 21 (02) : 181 - 216
  • [37] Regular ovoids and Cameron-Liebler sets of generators in polar spaces
    De Boeck, Maarten
    D'haeseleer, Jozefien
    Rodgers, Morgan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 213
  • [38] A decomposition of the natural embedding spaces for the symplectic dual polar spaces
    De Bruyn, Bart
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 462 - 477
  • [39] Symplectic capacities of Hermitian symmetric spaces of compact and noncompact type
    Loi, Andrea
    Mossa, Roberto
    Zuddas, Fabio
    JOURNAL OF SYMPLECTIC GEOMETRY, 2015, 13 (04) : 1049 - 1073
  • [40] Ovoids of the Hermitian surface in odd characteristic
    Giuzzi, L
    Korchmáros, G
    ADVANCES IN GEOMETRY, 2003, : S49 - S58