On large partial ovoids of symplectic and Hermitian polar spaces

被引:0
|
作者
Ceria, Michela [1 ]
De Beule, Jan [2 ,3 ]
Pavese, Francesco [1 ]
Smaldore, Valentino [4 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
关键词
Hermitian polar space; partial ovoid; symplectic polar space; MAXIMAL PARTIAL OVOIDS; PARTIAL SPREADS;
D O I
10.1002/jcd.21864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [21] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    G. Marino
    O. Polverino
    Designs, Codes and Cryptography, 2010, 56 : 115 - 130
  • [22] Characterizations of symplectic polar spaces
    Cardinali, Ilaria
    Cuypers, Hans
    Giuzzi, Luca
    Pasini, Antonio
    ADVANCES IN GEOMETRY, 2023, 23 (02) : 281 - 293
  • [23] Hyperovals of Hermitian polar spaces
    Antonio Cossidente
    Giuseppe Marino
    Designs, Codes and Cryptography, 2012, 64 : 309 - 314
  • [24] Hyperovals of Hermitian polar spaces
    Cossidente, Antonio
    Marino, Giuseppe
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (03) : 309 - 314
  • [25] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    Marino, G.
    Polverino, O.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 115 - 130
  • [26] Spreads of PG(3, q) and ovoids of polar spaces
    Bader, Laura
    Marino, Giuseppe
    Polverino, Olga
    Trombetti, Rocco
    FORUM MATHEMATICUM, 2007, 19 (06) : 1101 - 1110
  • [27] A common generalization of hypercube partitions and ovoids in polar spaces
    D'haeseleer, Jozefien
    Ihringer, Ferdinand
    Schmidt, Kai-Uwe
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, : 1113 - 1126
  • [28] Minimal symplectic atlases of Hermitian symmetric spaces
    Roberto Mossa
    Giovanni Placini
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2015, 85 : 79 - 85
  • [29] SYMPLECTIC BRANCHING LAWS AND HERMITIAN SYMMETRIC SPACES
    Schwarz, Benjamin
    Seppaenen, Henrik
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6595 - 6623
  • [30] Minimal symplectic atlases of Hermitian symmetric spaces
    Mossa, Roberto
    Placini, Giovanni
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (01): : 79 - 85