On large partial ovoids of symplectic and Hermitian polar spaces

被引:0
|
作者
Ceria, Michela [1 ]
De Beule, Jan [2 ,3 ]
Pavese, Francesco [1 ]
Smaldore, Valentino [4 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
关键词
Hermitian polar space; partial ovoid; symplectic polar space; MAXIMAL PARTIAL OVOIDS; PARTIAL SPREADS;
D O I
10.1002/jcd.21864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [1] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34
  • [2] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [3] Partial ovoids and partial spreads in symplectic and orthogonal polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1280 - 1297
  • [4] ON TRANSITIVE OVOIDS OF FINITE HERMITIAN POLAR SPACES
    Feng, Tao
    Li, Weicong
    COMBINATORICA, 2021, 41 (05) : 645 - 667
  • [5] On Transitive Ovoids of Finite Hermitian Polar Spaces
    Tao Feng
    Weicong Li
    Combinatorica, 2021, 41 : 645 - 667
  • [6] On m-ovoids of symplectic polar spaces
    Feng, Tao
    Wang, Ye
    Xiang, Qing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [7] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [8] Partial ovoids in classical finite polar spaces
    Klein, A
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 221 - 226
  • [9] On a class of hyperplanes of the symplectic and Hermitian dual polar spaces
    De Bruyn, Bart
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [10] On isometric full embeddings of symplectic dual polar spaces into Hermitian dual polar spaces
    De Bruyn, Bart
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2541 - 2552