Automated Contouring and Planning in Radiation Therapy: What Is 'Clinically Acceptable'?

被引:45
|
作者
Baroudi, Hana [1 ,2 ]
Brock, Kristy K. [1 ,3 ]
Cao, Wenhua [1 ]
Chen, Xinru [1 ,2 ]
Chung, Caroline [4 ]
Court, Laurence E. [1 ]
El Basha, Mohammad D. [1 ,2 ]
Farhat, Maguy [4 ]
Gay, Skylar [1 ,2 ]
Gronberg, Mary P. [1 ,2 ]
Gupta, Aashish Chandra [1 ,2 ,3 ]
Hernandez, Soleil [1 ,2 ]
Huang, Kai [1 ,2 ]
Jaffray, David A. [1 ,3 ]
Lim, Rebecca [1 ,2 ]
Marquez, Barbara [1 ,2 ]
Nealon, Kelly [1 ,2 ]
Netherton, Tucker J. [1 ]
Nguyen, Callistus M. [3 ]
Reber, Brandon [2 ,3 ]
Rhee, Dong Joo [1 ]
Salazar, Ramon M. [1 ]
Shanker, Mihir D. [5 ,6 ]
Sjogreen, Carlos [7 ]
Woodland, McKell [3 ,8 ]
Yang, Jinzhong [1 ]
Yu, Cenji [1 ,2 ]
Zhao, Yao [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, UTHealth Houston Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Dept Radiat Phys, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[5] Univ Queensland, St Lucia 4072, Australia
[6] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
[7] Univ Houston, Dept Phys, Houston, TX 77004 USA
[8] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
关键词
radiotherapy treatment planning; artificial intelligence; quality assurance; CELL LUNG-CANCER; DOSE-VOLUME HISTOGRAMS; AUTO-SEGMENTATION; AT-RISK; PROSTATE-CANCER; TREATMENT PLANS; RADIOTHERAPY; HEAD; ATLAS; DELINEATION;
D O I
10.3390/diagnostics13040667
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Developers and users of artificial-intelligence-based tools for automatic contouring and treatment planning in radiotherapy are expected to assess clinical acceptability of these tools. However, what is 'clinical acceptability'? Quantitative and qualitative approaches have been used to assess this ill-defined concept, all of which have advantages and disadvantages or limitations. The approach chosen may depend on the goal of the study as well as on available resources. In this paper, we discuss various aspects of 'clinical acceptability' and how they can move us toward a standard for defining clinical acceptability of new autocontouring and planning tools.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Automated Radiation Therapy Treatment Planning Using Meta-Optimization
    Huang, C.
    Nomura, Y.
    Yang, Y.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E583 - E584
  • [32] Automated Fiducial Marker Planning for Thoracic Stereotactic Body Radiation Therapy
    Gibbs, Jason D.
    Rai, Lav
    Wibowo, Henky
    Tsalyuk, Serge
    Anderson, Eric D.
    MEDICAL IMAGING 2012: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2012, 8316
  • [33] Optimizing Radiation Therapy Planning: A Hybrid Approach Integrating Physician Preferences and Automated Planning Systems
    Fox, T.
    Price, M.
    Hughes, F.
    Hansen, K. A.
    Lai, K.
    Grover, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E128 - E129
  • [34] Contouring of Pancreatic Tumor Volume Is Highly Variable on Interobserver Analysis in the Planning of Stereotactic Body Radiation Therapy
    Stumpf, P. K.
    Jones, B.
    Amini, A.
    Chang, S.
    Edil, B.
    Gajdos, C.
    Goodman, K. A.
    McCarter, M.
    McKinney, K.
    Meier, J.
    Pokharel, S.
    Schulick, R.
    Wagh, M.
    Wani, S.
    Schefter, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E215 - E215
  • [35] Contouring variability with CT and MRI of prostate cancer for radiation planning
    Otero-Romero, A.
    Perez-Rozos, A.
    Correa-Generoso, R.
    Jerez-Sainz, I.
    Garcia-Anaya, M. J.
    Zapata-Martinez, I.
    Roman-Jobacho, A.
    Toledo-Serrano, M. D.
    Ordonez-Marmolejo, R.
    Garcia-Rios, I.
    Gomez-Millan, J.
    Villalobos-Martin, J. A.
    Diaz-Antonio, T.
    Medina-Carmona, J. A.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S714 - S714
  • [36] A Data Driven Fully Automated Contouring and Planning Solution for Cervical Cancer
    Rhee, D.
    Jhingran, A.
    Rigaud, B.
    Huang, K.
    Kisling, K.
    Beadle, B.
    Cardenas, C.
    Kry, S.
    Vedam, S.
    Zhang, L.
    Brock, K.
    Shaw, W.
    O'Reilly, D.
    Simonds, H.
    Court, L.
    MEDICAL PHYSICS, 2020, 47 (06) : E264 - E265
  • [37] Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy
    Chen, Hsin-Chen
    Tan, Jun
    Dolly, Steven
    Kavanaugh, James
    Anastasio, Mark A.
    Low, Daniel A.
    Li, H. Harold
    Altman, Michael
    Gay, Hiram
    Thorstad, Wade L.
    Mutic, Sasa
    Li, Hua
    MEDICAL PHYSICS, 2015, 42 (02) : 1048 - 1059
  • [38] MVCT Auto-Contouring for Adpative Radiation Therapy
    Chao, M.
    Moros, E.
    Ratanatharathorn, V.
    Penagaricano, J.
    Yan, Y.
    Xing, L.
    Gardner, K.
    Corry, P.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [39] Contouring Variations and the Role of Deep Learning-Based Auto-Contouring in Breast Cancer Radiation Therapy: A Multi-Institutional Planning Study
    Choi, M. S.
    Chang, J. S.
    Kim, K.
    Chun, M.
    Chun, J.
    Kim, J.
    Shin, K. H.
    Kim, Y. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E25 - E25
  • [40] Automated lattice radiation therapy treatment planning personalised to tumour size and shape
    Gaudreault, Mathieu
    Yu, Kelvin K.
    Chang, David
    Kron, Tomas
    Hardcastle, Nicholas
    Chander, Sarat
    Yeo, Adam
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 125