Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation

被引:0
|
作者
Khaonuan, Sireethorn [1 ,2 ]
Jariyaboon, Rattana [2 ,3 ]
Usmanbaha, Nikannapas [1 ,2 ]
Cheirsilp, Benjamas [4 ]
Birkeland, Nils-Kare [5 ]
Kongjan, Prawit [2 ,3 ,6 ]
机构
[1] Prince Songkla Univ, Fac Engn, Energy Technol Program, Hat Yai, Thailand
[2] Prince Songkla Univ, Fac Sci & Technol, Biomass Convers Energy & Chem Biomec Res Unit, Pattani, Thailand
[3] Prince Songkla Univ, Fac Sci & Technol, Dept Sci, Pattani, Thailand
[4] Prince Songkla Univ, Biotechnol Bioresource Utilizat Lab, Dept Ind Biotechnol, Fac Agroind, Hat Yai, Songkhla, Thailand
[5] Univ Bergen, Dept Biol Sci, Bergen, Norway
[6] Prince Songkla Univ, Dept Sci, Fac Sci & Technol, Pattani 90112, Thailand
关键词
ABE fermentation; butanol; Clostridium beijerinckii; third-generation biomass; HYDROTHERMAL PRETREATMENT; ETHANOL; ACETONE; OPTIMIZATION; BIOMASS; HYDROLYSIS; SUBSTRATE; BIOFUEL; STALK;
D O I
10.1002/biot.202300026
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The economical bio-butanol-based fermentation process is mainly limited by the high price of first-generation biomass, which is an intensive cost for the pretreatment of second-generation biomass. As third-generation biomass, marine macroalgae could be potentially advantageous for conversion to clean and renewable bio-butanol through acetone-butanol-ethanol (ABE) fermentation. In this study, butanol production from three macroalgae species (Gracilaria tenuistipitata, Ulva intestinalis, and Rhizoclonium sp.) by Clostridium beijerinckii ATCC 10132 was assessed comparatively. The enriched C beijerinckii ATCC 10132 inoculum produced a high butanol concentration of 14.07 g L-1 using 60 g L-1 of glucose. Among the three marine seaweed species, G. tenuistipitata exhibited the highest potential for butanol production (1.38 g L-1). Under the 16 conditions designed using the Taguchi method for low-temperature hydrothermal pretreatment (HTP) of G. tenuistipitata, the maximum reducing sugar yield rate of 57.6% and ABE yield of 19.87% were achieved at a solid to liquid (S/L) ratio of 120, temperature of 110 & DEG;C, and holding time of 10 min (Severity factor, R-0 1.29). In addition, pretreated G. tenuistipitata could be converted to 3.1 g L-1 of butanol using low-HTP at an S/L ratio of 50 g L-1, temperature of 80 & DEG;C (R-0 0.11), and holding time of 5 min.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Butanol production by Clostridium acetobutylicum ATCC 824 using electro-fermentation in culture medium supplemented with butyrate and neutral red
    Guerrero, Karlo
    Gallardo, Roberto
    Gonzalez, Ernesto
    Veliz, Fabian
    Conejeros, Raul
    Gentina, Juan Carlos
    Aroca, German
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2022, 97 (06) : 1526 - 1535
  • [42] Optimization of Butanol Production from Mixed Sugars and Sweet Sorghum Bagasse Hydrolysate Using Clostridium beijerinckii TISTR 1461
    Daengbussadee, Chalida
    Laopaiboon, Lakkana
    Thanapornsin, Thanawat
    Laopaiboon, Pattana
    ENERGIES, 2025, 18 (02)
  • [43] Enhancement of Butanol Production Efficiency from Sweet Sorghum Stem Juice by Clostridium beijerinckii Using Statistical Experimental Design
    Sirisantimethakom, Likit
    Thanapornsin, Thanawat
    Laopaiboon, Lakkana
    Laopaiboon, Pattana
    CHIANG MAI JOURNAL OF SCIENCE, 2018, 45 (03): : 1235 - 1246
  • [44] Optimization of hydrogen and butanol production from agave guishe juice using Clostridium acetobutylicum ATCC824
    Oliva-Rodriguez, A.
    Morales-Martinez, T. K.
    Rodriguez-De la Garza, J. A.
    Medina-Morales, M. A.
    Gonzalez, L. J. Rios
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 108 : 206 - 214
  • [45] Production of Acetone, Butanol, and Ethanol (ABE) by Clostridium acetobutylicum YM1 from Pretreated Palm Kernel Cake in Batch Culture Fermentation
    Al-Tabib, Abdualati Ibrahim
    Al-Shorgani, Najeeb Kaid Nasser
    Abu Hasan, Hassimi
    Hamid, Aidil Abdul
    Kalil, Mohd Sahaid
    BIORESOURCES, 2017, 12 (02): : 3371 - 3386
  • [46] Optimization of nutrient supplements for butanol production from sweet sorghum stem juice by Clostridium beijerinckii using an orthogonal array design
    Sirisantimethakom, Likit
    Sanchanda, Patthranit
    Chatleudmongkol, Jetnipit
    Laopaiboon, Lakkana
    Laopaiboon, Pattana
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 : S137 - S137
  • [47] Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation
    Al-Shorgani, Najeeb Kaid Nasser
    Shukor, Hafiza
    Abdeshahian, Peyman
    Nazir, Mohd Yusuf Mohd
    Kalil, Mohd Sahaid
    Hamid, Aidil Abdul
    Yusoff, Wan Mohtar Wan
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2015, 4 (02) : 244 - 249
  • [48] Butanol production from Thai traditional beverage (Sato) factory wastewater using newly isolated Clostridium beijerinckii CUEA02
    Buranaprasopchai, Julalak
    Boonvitthya, Nassapat
    Glinwong, Chompunuch
    Chulalaksananukul, Warawut
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 187
  • [49] Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping
    Ezeji, Thaddeus C.
    Qureshi, Nasib
    Blaschek, Hans P.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2007, 34 (12) : 771 - 777
  • [50] Production of Biobuthanol from Various Lignocellulose Waste with Clostridium Acetobutylicum Bacteria using ABE (Acetone-Buthanol-Ethanol) Fermentation
    Sumardiono, Siswo
    Sari, Agustina R. P.
    Santoso, Hansel M.
    Jos, Bakti
    Pudjihastuti, Isti
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CHEMICAL PROCESS AND PRODUCT ENGINEERING (ICCPPE) 2019, 2020, 2197