Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation

被引:0
|
作者
Khaonuan, Sireethorn [1 ,2 ]
Jariyaboon, Rattana [2 ,3 ]
Usmanbaha, Nikannapas [1 ,2 ]
Cheirsilp, Benjamas [4 ]
Birkeland, Nils-Kare [5 ]
Kongjan, Prawit [2 ,3 ,6 ]
机构
[1] Prince Songkla Univ, Fac Engn, Energy Technol Program, Hat Yai, Thailand
[2] Prince Songkla Univ, Fac Sci & Technol, Biomass Convers Energy & Chem Biomec Res Unit, Pattani, Thailand
[3] Prince Songkla Univ, Fac Sci & Technol, Dept Sci, Pattani, Thailand
[4] Prince Songkla Univ, Biotechnol Bioresource Utilizat Lab, Dept Ind Biotechnol, Fac Agroind, Hat Yai, Songkhla, Thailand
[5] Univ Bergen, Dept Biol Sci, Bergen, Norway
[6] Prince Songkla Univ, Dept Sci, Fac Sci & Technol, Pattani 90112, Thailand
关键词
ABE fermentation; butanol; Clostridium beijerinckii; third-generation biomass; HYDROTHERMAL PRETREATMENT; ETHANOL; ACETONE; OPTIMIZATION; BIOMASS; HYDROLYSIS; SUBSTRATE; BIOFUEL; STALK;
D O I
10.1002/biot.202300026
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The economical bio-butanol-based fermentation process is mainly limited by the high price of first-generation biomass, which is an intensive cost for the pretreatment of second-generation biomass. As third-generation biomass, marine macroalgae could be potentially advantageous for conversion to clean and renewable bio-butanol through acetone-butanol-ethanol (ABE) fermentation. In this study, butanol production from three macroalgae species (Gracilaria tenuistipitata, Ulva intestinalis, and Rhizoclonium sp.) by Clostridium beijerinckii ATCC 10132 was assessed comparatively. The enriched C beijerinckii ATCC 10132 inoculum produced a high butanol concentration of 14.07 g L-1 using 60 g L-1 of glucose. Among the three marine seaweed species, G. tenuistipitata exhibited the highest potential for butanol production (1.38 g L-1). Under the 16 conditions designed using the Taguchi method for low-temperature hydrothermal pretreatment (HTP) of G. tenuistipitata, the maximum reducing sugar yield rate of 57.6% and ABE yield of 19.87% were achieved at a solid to liquid (S/L) ratio of 120, temperature of 110 & DEG;C, and holding time of 10 min (Severity factor, R-0 1.29). In addition, pretreated G. tenuistipitata could be converted to 3.1 g L-1 of butanol using low-HTP at an S/L ratio of 50 g L-1, temperature of 80 & DEG;C (R-0 0.11), and holding time of 5 min.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii
    Mu, Xindong
    Sun, Wei
    Liu, Chao
    Wang, Haisong
    BIOTECHNOLOGY LETTERS, 2011, 33 (08) : 1587 - 1591
  • [22] Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: Efficient use of penta and hexa carbohydrates
    Bellido, Carolina
    Loureiro Pinto, Marina
    Coca, Monica
    Gonzalez-Benito, Gerardo
    Teresa Garcia-Cubero, Maria
    BIORESOURCE TECHNOLOGY, 2014, 167 : 198 - 205
  • [23] Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation
    Thaddeus C. Ezeji
    Patrick M. Karcher
    Nasib Qureshi
    Hans P. Blaschek
    Bioprocess and Biosystems Engineering, 2005, 27 : 207 - 214
  • [24] Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation
    Ezeji, TC
    Karcher, PM
    Qureshi, N
    Blaschek, HP
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2005, 27 (03) : 207 - 214
  • [25] Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260
    Qureshi, N.
    Singh, V.
    Liu, S.
    Ezeji, T. C.
    Saha, B. C.
    Cotta, A.
    BIORESOURCE TECHNOLOGY, 2014, 154 : 222 - 228
  • [26] Cellulosic Butanol (ABE) Biofuel Production from Sweet Sorghum Bagasse (SSB): Impact of Hot Water Pretreatment and Solid Loadings on Fermentation Employing Clostridium beijerinckii P260
    N. Qureshi
    S. Liu
    S. Hughes
    D. Palmquist
    B. Dien
    B. Saha
    BioEnergy Research, 2016, 9 : 1167 - 1179
  • [27] Enhanced butanol production using Clostridium beijerinckii SE-2 from the waste of corn processing
    Zhang, Jie
    Jia, Baolei
    BIOMASS & BIOENERGY, 2018, 115 : 260 - 266
  • [28] Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101
    Edhilvia J. Campos
    Nasib Qureshi
    Hans P. Blaschek
    Applied Biochemistry and Biotechnology, 2002, 98-100 : 553 - 561
  • [29] Butanol production by Clostridium beijerinckii BA101 using cassava flour as fermentation substrate: enzymatic versus chemical pretreatments
    Lepiz-Aguilar, Leonardo
    Rodriguez-Rodriguez, Carlos E.
    Laura Arias, Maria
    Lutz, Giselle
    Ulate, William
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2011, 27 (08): : 1933 - 1939
  • [30] Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132
    Bezerra, Petrucia Karine Santos de Brito
    de Azevedo, Juliana Chris Silva
    dos Santos, Everaldo Silvino
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (19) : 23447 - 23459