Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation

被引:0
|
作者
Khaonuan, Sireethorn [1 ,2 ]
Jariyaboon, Rattana [2 ,3 ]
Usmanbaha, Nikannapas [1 ,2 ]
Cheirsilp, Benjamas [4 ]
Birkeland, Nils-Kare [5 ]
Kongjan, Prawit [2 ,3 ,6 ]
机构
[1] Prince Songkla Univ, Fac Engn, Energy Technol Program, Hat Yai, Thailand
[2] Prince Songkla Univ, Fac Sci & Technol, Biomass Convers Energy & Chem Biomec Res Unit, Pattani, Thailand
[3] Prince Songkla Univ, Fac Sci & Technol, Dept Sci, Pattani, Thailand
[4] Prince Songkla Univ, Biotechnol Bioresource Utilizat Lab, Dept Ind Biotechnol, Fac Agroind, Hat Yai, Songkhla, Thailand
[5] Univ Bergen, Dept Biol Sci, Bergen, Norway
[6] Prince Songkla Univ, Dept Sci, Fac Sci & Technol, Pattani 90112, Thailand
关键词
ABE fermentation; butanol; Clostridium beijerinckii; third-generation biomass; HYDROTHERMAL PRETREATMENT; ETHANOL; ACETONE; OPTIMIZATION; BIOMASS; HYDROLYSIS; SUBSTRATE; BIOFUEL; STALK;
D O I
10.1002/biot.202300026
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The economical bio-butanol-based fermentation process is mainly limited by the high price of first-generation biomass, which is an intensive cost for the pretreatment of second-generation biomass. As third-generation biomass, marine macroalgae could be potentially advantageous for conversion to clean and renewable bio-butanol through acetone-butanol-ethanol (ABE) fermentation. In this study, butanol production from three macroalgae species (Gracilaria tenuistipitata, Ulva intestinalis, and Rhizoclonium sp.) by Clostridium beijerinckii ATCC 10132 was assessed comparatively. The enriched C beijerinckii ATCC 10132 inoculum produced a high butanol concentration of 14.07 g L-1 using 60 g L-1 of glucose. Among the three marine seaweed species, G. tenuistipitata exhibited the highest potential for butanol production (1.38 g L-1). Under the 16 conditions designed using the Taguchi method for low-temperature hydrothermal pretreatment (HTP) of G. tenuistipitata, the maximum reducing sugar yield rate of 57.6% and ABE yield of 19.87% were achieved at a solid to liquid (S/L) ratio of 120, temperature of 110 & DEG;C, and holding time of 10 min (Severity factor, R-0 1.29). In addition, pretreated G. tenuistipitata could be converted to 3.1 g L-1 of butanol using low-HTP at an S/L ratio of 50 g L-1, temperature of 80 & DEG;C (R-0 0.11), and holding time of 5 min.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260
    Qureshi, N.
    Bowman, M. J.
    Saha, B. C.
    Hector, R.
    Berhow, M. A.
    Cotta, M. A.
    FOOD AND BIOPRODUCTS PROCESSING, 2012, 90 (C3) : 533 - 540
  • [32] Cellulosic Butanol (ABE) Biofuel Production from Sweet Sorghum Bagasse (SSB): Impact of Hot Water Pretreatment and Solid Loadings on Fermentation Employing Clostridium beijerinckii P260
    Qureshi, N.
    Liu, S.
    Hughes, S.
    Palmquist, D.
    Dien, B.
    Saha, B.
    BIOENERGY RESEARCH, 2016, 9 (04) : 1167 - 1179
  • [33] Improvement of butanol production from sweet sorghum juice by Clostridium beijerinckii using an orthogonal array design
    Sirisantimethakom, Likit
    Laopaiboon, Lakkana
    Sanchanda, Patthranit
    Chatleudmongkol, Jetnipit
    Laopaiboon, Pattana
    INDUSTRIAL CROPS AND PRODUCTS, 2016, 79 : 287 - 294
  • [34] Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101
    Campos, EJ
    Qureshi, N
    Blaschek, HP
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2002, 98 (1-9) : 553 - 561
  • [35] Butanol production by Clostridium beijerinckii BA101 using cassava flour as fermentation substrate: enzymatic versus chemical pretreatments
    Leonardo Lépiz-Aguilar
    Carlos E. Rodríguez-Rodríguez
    María Laura Arias
    Giselle Lutz
    William Ulate
    World Journal of Microbiology and Biotechnology, 2011, 27 : 1933 - 1939
  • [36] Butanol Production from Wheat Straw by Combining Crude Enzymatic Hydrolysis and Anaerobic Fermentation Using Clostridium acetobutylicum ATCC824
    Wang, Zhenyu
    Cao, Guangli
    Jiang, Cheng
    Song, Jinzhu
    Zheng, Ju
    Yang, Qian
    ENERGY & FUELS, 2013, 27 (10) : 5900 - 5906
  • [37] Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors
    Qureshi, Nasib
    Saha, Badal C.
    Hector, Ronald E.
    Cotta, Michael A.
    BIOMASS & BIOENERGY, 2008, 32 (12): : 1353 - 1358
  • [38] Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water
    Parekh, M
    Formanek, J
    Blaschek, HP
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 51 (02) : 152 - 157
  • [39] Butanol Production from Lignocellulosic-based Hexoses and Pentoses by Fermentation of Clostridium Acetobutylicum
    Raganati, Francesca
    Curth, Sebastian
    Goetz, Peter
    Olivieri, Giuseppe
    Marzocchella, Antonio
    IBIC2012: INTERNATIONAL CONFERENCE ON INDUSTRIAL BIOTECHNOLOGY, 2012, 27 : 91 - 96
  • [40] Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water
    M. Parekh
    J. Formanek
    H. P. Blaschek
    Applied Microbiology and Biotechnology, 1999, 51 : 152 - 157