Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM

被引:2
|
作者
Chen, Houhe [1 ]
Zhu, Mingyang [1 ]
Hu, Xiao [1 ]
Wang, Jiarui [2 ]
Sun, Yong [3 ]
Yang, Jinduo [1 ]
Li, Baoju [3 ]
Meng, Xiangdong [2 ]
机构
[1] Northeast Elect Power Univ, Jilin 132000, Peoples R China
[2] State Grid Jilin Elect Power Res Inst, Changchun 130000, Peoples R China
[3] State Grid Jilinsheng Elect Power Supply Co, Changchun 130000, Peoples R China
关键词
Carbon targets - Convolutional networks - Energy demands - Forecasting methods - Memory network - Multifeatures - Multiple factors - Power - Power load forecasting - Short term load forecasting;
D O I
10.1155/2023/8846554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the construction of a new-type power system under the China "double carbon" target and the increasing diversification of the energy demand on the user side, the short-term load forecasting of the power system is facing new challenges. To fully exploit the massive information contained in data, based on the graph convolutional network (GCN) and long short-term memory network (LSTM), this paper presents a new short-term load forecasting method for power systems considering multiple factors. The Spearman rank correlation coefficient was used to analyse the correlation between load and meteorological factors, and a model including meteorology, dates, and regions was established. Secondly, GCN and LSTM are jointly used to extract the spatial and temporal characteristics of massive data, respectively, and finally achieve short-term power load prediction. Historical electrical load data from 2020 to 2022 public data of a real industrial park in southern China were selected to verify the validity of the proposed method from the aspects of forecasting accuracy, feature dimension, and training time.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks
    Agga, First Ali
    Abbou, Second Ahmed
    El Houm, Yassine
    Labbadi, Moussa
    IFAC PAPERSONLINE, 2022, 55 (12): : 777 - 781
  • [32] LSTM-based Short-term Load Forecasting for Building Electricity Consumption
    Wang, Xin
    Fang, Fang
    Zhang, Xiaoning
    Liii, Yajuan
    Wei, Le
    Shi, Yang
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1418 - 1423
  • [33] Enhancing Short-Term Power Load Forecasting With a TimesNet-Crossformer-LSTM Approach
    He, Jun
    Yuan, Kuidong
    Zhong, Zijie
    Sun, Yifan
    IEEE ACCESS, 2024, 12 : 56774 - 56788
  • [34] An ADMM-LSTM framework for short-term load forecasting
    Liu, Shuo
    Kong, Zhengmin
    Huang, Tao
    Du, Yang
    Xiang, Wei
    NEURAL NETWORKS, 2024, 173
  • [35] Short-Term Load Forecasting Using an LSTM Neural Network
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    2020 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2020,
  • [36] Short-term load forecasting based on LSTNet in power system
    Liu, Rong
    Chen, Luan
    Hu, Weihao
    Huang, Qi
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (12)
  • [37] Short-term Power Load Forecasting Based on Balanced KNN
    Lv, Xianlong
    Cheng, Xingong
    YanShuang
    Tang Yan-mei
    2017 INTERNATIONAL SYMPOSIUM ON APPLICATION OF MATERIALS SCIENCE AND ENERGY MATERIALS (SAMSE 2017), 2018, 322
  • [38] Short-Term Power Load Forecasting Based on HFEMD and GALSTM
    Jin, Ji
    Wang, Bin
    Zhang, Yuhan
    Yu, Min
    Zheng, Xiaojiao
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1612 - 1617
  • [39] Short-term power load forecasting based on big data
    State Grid Information & Telecommunication Branch, Xicheng District, Beijing
    100761, China
    不详
    100070, China
    不详
    100031, China
    Zhongguo Dianji Gongcheng Xuebao, 1 (37-42):
  • [40] Short-term power load forecasting based on gray theory
    Herui, C. (cuiherui1967@126.com), 2013, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):