Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM

被引:2
|
作者
Chen, Houhe [1 ]
Zhu, Mingyang [1 ]
Hu, Xiao [1 ]
Wang, Jiarui [2 ]
Sun, Yong [3 ]
Yang, Jinduo [1 ]
Li, Baoju [3 ]
Meng, Xiangdong [2 ]
机构
[1] Northeast Elect Power Univ, Jilin 132000, Peoples R China
[2] State Grid Jilin Elect Power Res Inst, Changchun 130000, Peoples R China
[3] State Grid Jilinsheng Elect Power Supply Co, Changchun 130000, Peoples R China
关键词
Carbon targets - Convolutional networks - Energy demands - Forecasting methods - Memory network - Multifeatures - Multiple factors - Power - Power load forecasting - Short term load forecasting;
D O I
10.1155/2023/8846554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the construction of a new-type power system under the China "double carbon" target and the increasing diversification of the energy demand on the user side, the short-term load forecasting of the power system is facing new challenges. To fully exploit the massive information contained in data, based on the graph convolutional network (GCN) and long short-term memory network (LSTM), this paper presents a new short-term load forecasting method for power systems considering multiple factors. The Spearman rank correlation coefficient was used to analyse the correlation between load and meteorological factors, and a model including meteorology, dates, and regions was established. Secondly, GCN and LSTM are jointly used to extract the spatial and temporal characteristics of massive data, respectively, and finally achieve short-term power load prediction. Historical electrical load data from 2020 to 2022 public data of a real industrial park in southern China were selected to verify the validity of the proposed method from the aspects of forecasting accuracy, feature dimension, and training time.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Reliable Short-Term Power Load Forecasting Method Based on VMD-IWOA-LSTM Algorithm
    Zhuang, Zhiyuan
    Zheng, Xidong
    Chen, Zixing
    Jin, Tao
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (08) : 1121 - 1132
  • [22] Short-term Load Forecasting of CCHP System Based on PSO-LSTM
    Zhu, Yu-Rong
    Wang, Jian-Guo
    Sun, Yu-Qian
    Wu, Jia-Jun
    Zhao, Guo-Qiang
    Yao, Yuan
    Liu, Jian-Long
    Chen, He-Lin
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 639 - 644
  • [23] Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
    Kong, Weicong
    Dong, Zhao Yang
    Jia, Youwei
    Hill, David J.
    Xu, Yan
    Zhang, Yuan
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 841 - 851
  • [24] Short-Term Load Forecasting Using Optimized LSTM Networks Based on EMD
    Li, Tiantian
    Wang, Bo
    Zhou, Min
    Zhang, Lianming
    Zhao, Xin
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 84 - 88
  • [25] Short-term load forecasting based on MB-LSTM neural network
    Cai, Changchun
    Tao, Yuan
    Ren, Qiwen
    Hu, Gang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5402 - 5406
  • [26] Short-term load forecasting method based on PCC-LSTM model
    Liu Q.
    Liu Y.
    Wen Y.
    He J.
    Li X.
    Bi D.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2529 - 2536
  • [27] Short-term power load forecasting using SSA-CNN-LSTM method
    Wang, Yonggang
    Hao, Yue
    Zhang, Biying
    Zhang, Nannan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [28] Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting
    Li, Binglin
    Shao, Yong
    Lian, Yufeng
    Li, Pai
    Lei, Qiang
    ENERGIES, 2023, 16 (17)
  • [29] Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM
    Lu, Shuai
    Bao, Taotao
    IEEE ACCESS, 2024, 12 : 76870 - 76879
  • [30] Short-term load forecasting based on LSTM networks considering attention mechanism
    Lin, Jun
    Ma, Jin
    Zhu, Jianguo
    Cui, Yu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 137