Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM

被引:2
|
作者
Chen, Houhe [1 ]
Zhu, Mingyang [1 ]
Hu, Xiao [1 ]
Wang, Jiarui [2 ]
Sun, Yong [3 ]
Yang, Jinduo [1 ]
Li, Baoju [3 ]
Meng, Xiangdong [2 ]
机构
[1] Northeast Elect Power Univ, Jilin 132000, Peoples R China
[2] State Grid Jilin Elect Power Res Inst, Changchun 130000, Peoples R China
[3] State Grid Jilinsheng Elect Power Supply Co, Changchun 130000, Peoples R China
关键词
Carbon targets - Convolutional networks - Energy demands - Forecasting methods - Memory network - Multifeatures - Multiple factors - Power - Power load forecasting - Short term load forecasting;
D O I
10.1155/2023/8846554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the construction of a new-type power system under the China "double carbon" target and the increasing diversification of the energy demand on the user side, the short-term load forecasting of the power system is facing new challenges. To fully exploit the massive information contained in data, based on the graph convolutional network (GCN) and long short-term memory network (LSTM), this paper presents a new short-term load forecasting method for power systems considering multiple factors. The Spearman rank correlation coefficient was used to analyse the correlation between load and meteorological factors, and a model including meteorology, dates, and regions was established. Secondly, GCN and LSTM are jointly used to extract the spatial and temporal characteristics of massive data, respectively, and finally achieve short-term power load prediction. Historical electrical load data from 2020 to 2022 public data of a real industrial park in southern China were selected to verify the validity of the proposed method from the aspects of forecasting accuracy, feature dimension, and training time.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors
    Chen, Houhe
    Zhu, Mingyang
    Hu, Xiao
    Wang, Jiarui
    Sun, Yong
    Yang, Jinduo
    ENERGY REPORTS, 2023, 9 : 1022 - 1031
  • [2] Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors
    Chen, Houhe
    Zhu, Mingyang
    Hu, Xiao
    Wang, Jiarui
    Sun, Yong
    Yang, Jinduo
    ENERGY REPORTS, 2023, 9 : 1022 - 1031
  • [3] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [4] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860
  • [5] Short-Term Load Forecasting based on ResNet and LSTM
    Choi, Hyungeun
    Ryu, Seunghyoung
    Kim, Hongseok
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [6] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [7] Short-Term Power Load Forecasting Based on VMD-SHO-LSTM
    Gao, Qingzhong
    Wu, Shuai
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 346 - 353
  • [8] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [9] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174
  • [10] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186