A Generalized Lipschitz Shadowing Property for Flows

被引:0
|
作者
Han, Bo [1 ]
Lee, Manseob [2 ]
机构
[1] Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
[2] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
flow; Perron property; hyperbolicity; generalized Lipschitz shadowing property; structural stability; STRUCTURAL STABILITY; EXPONENTIAL DICHOTOMIES; INVARIANT SPLITTINGS; DIFFEOMORPHISMS; EXISTENCE;
D O I
10.1007/s10473-023-0115-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a generalized Lipschitz shadowing property for flows and prove that a flow phi generated by a C-1 vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 50 条
  • [21] Shadowing and inverse shadowing property on circle
    韩英豪
    葛琦
    南华
    延边大学学报(自然科学版), 2005, (03) : 161 - 164
  • [22] Lipschitz shadowing implies structural stability
    Pilyugin, Sergei Yu
    Tikhomirov, Sergey
    NONLINEARITY, 2010, 23 (10) : 2509 - 2515
  • [23] On genericity of shadowing and periodic shadowing property
    Koscielniak, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (01) : 188 - 196
  • [24] Lipschitz and Holder Shadowing and Structural Stability
    Pilyugin, Sergei Yu.
    Sakai, Kazuhiro
    SHADOWING AND HYPERBOLICITY, 2017, 2193 : 37 - 124
  • [25] Flows with the (asymptotic) average shadowing property on three-dimensional closed manifolds
    Arbieto, A.
    Ribeiro, R.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (04): : 425 - 432
  • [26] The d -Shadowing Property and Average Shadowing Property for Iterated Function Systems
    Jiang, Jie
    Wang, Lidong
    Zhao, Yingcui
    Wang, Lidong (wld0707@126.com), 1600, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2020):
  • [27] Lipschitz-like property relative to a set and the generalized Mordukhovich criterion
    Meng, K. W.
    Li, M. H.
    Yao, W. F.
    Yang, X. Q.
    MATHEMATICAL PROGRAMMING, 2021, 189 (1-2) : 455 - 489
  • [28] Lipschitz-like property relative to a set and the generalized Mordukhovich criterion
    K. W. Meng
    M. H. Li
    W. F. Yao
    X. Q. Yang
    Mathematical Programming, 2021, 189 : 455 - 489
  • [29] On generalized measure contraction property and energy functionals over Lipschitz maps
    Kuwae, K
    Shioya, T
    POTENTIAL ANALYSIS, 2001, 15 (1-2) : 105 - 121
  • [30] On Generalized Measure Contraction Property and Energy Functionals over Lipschitz Maps
    Kazuhiro Kuwae
    Takashi Shioya
    Potential Analysis, 2001, 15 : 105 - 121