A Generalized Lipschitz Shadowing Property for Flows

被引:0
|
作者
Han, Bo [1 ]
Lee, Manseob [2 ]
机构
[1] Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
[2] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
flow; Perron property; hyperbolicity; generalized Lipschitz shadowing property; structural stability; STRUCTURAL STABILITY; EXPONENTIAL DICHOTOMIES; INVARIANT SPLITTINGS; DIFFEOMORPHISMS; EXISTENCE;
D O I
10.1007/s10473-023-0115-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a generalized Lipschitz shadowing property for flows and prove that a flow phi generated by a C-1 vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 50 条
  • [31] Chaos and the shadowing property
    Koscielniak, Piotr
    Mazur, Marcin
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (13) : 2553 - 2557
  • [32] Limit shadowing property
    Eirola, T
    Nevanlinna, O
    Pilyugin, SY
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) : 75 - 92
  • [33] Controlled shadowing property
    Bahabadi, Alireza Zamani
    APPLIED GENERAL TOPOLOGY, 2018, 19 (01): : 91 - 99
  • [34] Quantifying the Shadowing Property
    Morales, C. A.
    Nguyen, T.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023,
  • [35] The fuzzy shadowing property
    Applebaum, E
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 502 - 506
  • [36] Diffeomorphisms with the shadowing property
    Sakai, K
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 : 396 - 399
  • [37] Fuzzy shadowing property
    Applebaum, Ellen
    Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 1999, : 502 - 506
  • [38] Lipschitz shadowing in piecewise-linear mappings
    S. Yu. Pilyugin
    A. A. Rodionova
    Differential Equations, 2016, 52 : 1732 - 1737
  • [39] ORBITAL SHADOWING PROPERTY
    Honary, Bahman
    Bahabadi, Alireza Zamani
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) : 645 - 650
  • [40] Recurrence and the shadowing property
    Chu, CK
    Koo, KS
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (03) : 217 - 225