On generalized measure contraction property and energy functionals over Lipschitz maps

被引:23
|
作者
Kuwae, K [1 ]
Shioya, T
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
[2] Tohoku Univ, Inst Math, Semdai 9808578, Japan
关键词
Dirichlet space; Sobolev space; measure contraction property; subpartitional lemma; Gamma-limit; Riemannian manifold; Alexandrov space; harmonic map; Bishop inequality; Bishop-Gromov inequality;
D O I
10.1023/A:1011218425271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct Sobolev spaces and energy functionals over maps between metric spaces under the strong measure contraction property of Bishop-Gromov type, which is a generalized notion of Ricci curvature bounded below. We also present the notion of generalized measure contraction property, which gives a characterization of energies by approximating energies of Sturm type over Lipschitz maps.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条
  • [1] On Generalized Measure Contraction Property and Energy Functionals over Lipschitz Maps
    Kazuhiro Kuwae
    Takashi Shioya
    Potential Analysis, 2001, 15 : 105 - 121
  • [2] GENERALIZED-GRADIENTS OF LIPSCHITZ FUNCTIONALS
    CLARKE, FH
    ADVANCES IN MATHEMATICS, 1981, 40 (01) : 52 - 67
  • [3] Asymptotic dimension, property A, and Lipschitz maps
    M. Cencelj
    J. Dydak
    A. Vavpetič
    Revista Matemática Complutense, 2013, 26 : 561 - 571
  • [4] Asymptotic dimension, property A, and Lipschitz maps
    Cencelj, M.
    Dydak, J.
    Vavpetic, A.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 561 - 571
  • [5] Biseparating maps on generalized Lipschitz spaces
    Leung, Denny H.
    STUDIA MATHEMATICA, 2010, 196 (01) : 23 - 40
  • [6] Generalized Fountain Theorem for Locally Lipschitz Functionals and application
    Alves, Claudianor O.
    Batkam, Cyril J.
    Patricio, Geovany F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [7] Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property
    Jeff Cheeger
    Bruce Kleiner
    Geometric and Functional Analysis, 2009, 19 : 1017 - 1028
  • [8] A Generalized Lipschitz Shadowing Property for Flows
    Han, Bo
    Lee, Manseob
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 259 - 288
  • [9] A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS
    韩波
    Manseob LEE
    Acta Mathematica Scientia, 2023, 43 (01) : 259 - 288
  • [10] A Generalized Lipschitz Shadowing Property for Flows
    Bo Han
    Manseob Lee
    Acta Mathematica Scientia, 2023, 43 : 259 - 288