A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS

被引:0
|
作者
韩波 [1 ]
Manseob LEE [2 ]
机构
[1] LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University
[2] Department of Marketing Big Data and Mathematics,Mokwon University
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
flow; Perron property; hyperbolicity; generalized Lipschitz shadowing property; structural stability;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flow Φ generated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 50 条
  • [1] A Generalized Lipschitz Shadowing Property for Flows
    Bo Han
    Manseob Lee
    Acta Mathematica Scientia, 2023, 43 : 259 - 288
  • [2] A Generalized Lipschitz Shadowing Property for Flows
    Han, Bo
    Lee, Manseob
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 259 - 288
  • [3] DIFFEOMORPHISMS WITH A GENERALIZED LIPSCHITZ SHADOWING PROPERTY
    Lee, Manseob
    Oh, Jumi
    Wen, Xiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) : 1913 - 1927
  • [4] Lipschitz shadowing and structural stability of flows
    Palmer, Kenneth J.
    Pilyugin, Sergei Yu.
    Tikhomirov, Sergey B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1723 - 1747
  • [5] SHADOWING PROPERTY FOR ADMM FLOWS
    Jung, Yoon Mo
    Shin, Bomi
    Yun, Sangwoon
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 395 - 408
  • [6] Lipschitz inverse shadowing for non-singular flows
    Todorov, Dmitry
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (01): : 40 - 55
  • [7] Generic homeomorphisms do not have the lipschitz shadowing property
    O. B. Plamenevskaya
    Mathematical Notes, 1999, 65 : 400 - 403
  • [8] Lipschitz structural stability of group actions with the shadowing property
    Artigue, Alfonso
    Dong, Meihua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 : 1 - 19
  • [9] Generic homeomorphisms do not have the Lipschitz shadowing property
    Plamenevskaya, OB
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 400 - 403
  • [10] WEAK SHADOWING PROPERTY FOR FLOWS ON ORIENTED SURFACES
    Li, Ming
    Liu, Zhongjie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (06) : 2591 - 2605