A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS

被引:0
|
作者
韩波 [1 ]
Manseob LEE [2 ]
机构
[1] LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University
[2] Department of Marketing Big Data and Mathematics,Mokwon University
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
flow; Perron property; hyperbolicity; generalized Lipschitz shadowing property; structural stability;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flow Φ generated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 50 条
  • [41] On Periodic Shadowing Property
    Darabi, Ali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 14 (01): : 63 - 72
  • [42] Conditional Lipschitz Shadowing for Ordinary Differential Equations
    Backes, Lucas
    Dragicevic, Davor
    Onitsuka, Masakazu
    Pituk, Mihaly
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3535 - 3552
  • [43] Dynamical Systems with Lipschitz Inverse Shadowing Properties
    Pilyugin, S. Yu.
    Vol'fson, G. I.
    Todorov, D. I.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2011, 44 (03) : 208 - 213
  • [44] Lipschitz shadowing in piecewise-linear mappings
    Pilyugin, S. Yu.
    Rodionova, A. A.
    DIFFERENTIAL EQUATIONS, 2016, 52 (13) : 1732 - 1737
  • [45] Average Shadowing Property and Asymptotic Average Shadowing Property of Linear Dynamical Systems
    Jiao, Lixin
    Wang, Lidong
    Li, Fengquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [46] Lipschitz shadowing for contracting/expanding dynamics on average
    Backes, Lucas
    Dragicevic, Davor
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [47] The d-Shadowing Property and Average Shadowing Property for Iterated Function Systems
    Jiang, Jie
    Wang, Lidong
    Zhao, Yingcui
    COMPLEXITY, 2020, 2020
  • [48] A generalized shadowing lemma
    Gan, SB
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 627 - 632
  • [49] Shadowing in structurally stable flows
    Pilyugin, SY
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 140 (02) : 238 - 265
  • [50] On the shadowing property of functional equations
    Jang, Sun Young
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (03) : 400 - 408