A Generalized Lipschitz Shadowing Property for Flows

被引:0
|
作者
Han, Bo [1 ]
Lee, Manseob [2 ]
机构
[1] Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
[2] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
flow; Perron property; hyperbolicity; generalized Lipschitz shadowing property; structural stability; STRUCTURAL STABILITY; EXPONENTIAL DICHOTOMIES; INVARIANT SPLITTINGS; DIFFEOMORPHISMS; EXISTENCE;
D O I
10.1007/s10473-023-0115-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a generalized Lipschitz shadowing property for flows and prove that a flow phi generated by a C-1 vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 50 条