TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic Density Estimation

被引:4
|
作者
Wang, Yinsong [1 ]
Ding, Yu [2 ]
Shahrampour, Shahin [1 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Kernel; Estimation; Real-time systems; Bandwidth; Density functional theory; Nanoparticles; Upper bound; Adaptive estimation; asymptotic mean integrated squared error; kernel density estimation; real-time density estimation; CHOICE;
D O I
10.1109/TPAMI.2023.3297950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel density estimation is arguably one of the most commonly used density estimation techniques, and the use of "sliding window" mechanism adapts kernel density estimators to dynamic processes. In this article, we derive the asymptotic mean integrated squared error (AMISE) upper bound for the "sliding window" kernel density estimator. This upper bound provides a principled guide to devise a novel estimator, which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for "sliding window" kernel density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller run-time.
引用
收藏
页码:13831 / 13843
页数:13
相关论文
共 50 条
  • [21] Gradient Estimation for Real-Time Adaptive Temporal Filtering
    Schied, Christoph
    Peters, Christoph
    Dachsbacher, Carsten
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2018, 1 (02)
  • [22] Toward Real-Time Kernel Density Estimate Display for Instrumentation
    Barford, Lee
    Gibbs, Ivan
    Kelley, Richard
    2011 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2011, : 1397 - 1402
  • [23] Adaptive kernel density estimation using beta kernel
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3293 - +
  • [24] Adaptive learning-enhanced lightweight network for real-time vehicle density estimation
    Qin, Ling-Xiao
    Sun, Hong-Mei
    Duan, Xiao-Meng
    Che, Cheng-Yue
    Jia, Rui-Sheng
    VISUAL COMPUTER, 2025, 41 (04): : 2857 - 2873
  • [25] Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting
    Bessa, Ricardo J.
    Miranda, Vladimiro
    Botterud, Audun
    Wang, Jianhui
    Constantinescu, Emil M.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (04) : 660 - 669
  • [26] Real-Time Android Application for Traffic Density Estimation
    Kerouh, Fatma
    Ziou, Djemel
    IEEE ACCESS, 2018, 6 : 49896 - 49901
  • [27] Integrated real-time estimation of clutter density for tracking
    Li, XR
    Li, N
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1998, 1998, 3373 : 559 - 571
  • [28] Real-time crowd density estimation using images
    Marana, AN
    Cavenaghi, MA
    Ulson, RS
    Drumond, FL
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 355 - 362
  • [29] Integrated real-time estimation of clutter density for tracking
    Li, XR
    Li, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (10) : 2797 - 2805
  • [30] Kernel Density Estimation and Local Time
    Tudor, Ciprian A.
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 141 - 150