TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic Density Estimation

被引:4
|
作者
Wang, Yinsong [1 ]
Ding, Yu [2 ]
Shahrampour, Shahin [1 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Kernel; Estimation; Real-time systems; Bandwidth; Density functional theory; Nanoparticles; Upper bound; Adaptive estimation; asymptotic mean integrated squared error; kernel density estimation; real-time density estimation; CHOICE;
D O I
10.1109/TPAMI.2023.3297950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel density estimation is arguably one of the most commonly used density estimation techniques, and the use of "sliding window" mechanism adapts kernel density estimators to dynamic processes. In this article, we derive the asymptotic mean integrated squared error (AMISE) upper bound for the "sliding window" kernel density estimator. This upper bound provides a principled guide to devise a novel estimator, which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for "sliding window" kernel density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller run-time.
引用
收藏
页码:13831 / 13843
页数:13
相关论文
共 50 条
  • [31] Generalized kernel density estimator
    Novak, SY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (03) : 570 - 583
  • [32] Adaptive Online Kernel Density Estimation Method
    Deng Q.-L.
    Qiu T.-Y.
    Shen F.-R.
    Zhao J.-X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1173 - 1188
  • [33] Multivariate locally adaptive kernel density estimation
    Gao, Jia-Xing
    Jiang, Da-Quan
    Qian, Min-Ping
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4431 - 4444
  • [34] An Adaptive Kernel Density Estimation for Motion Detection
    Xu, Dongbin
    Liu, Changping
    Huang, Lei
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 613 - 617
  • [35] Estimator Selection: a New Method with Applications to Kernel Density Estimation
    Lacour C.
    Massart P.
    Rivoirard V.
    Sankhya A, 2017, 79 (2): : 298 - 335
  • [36] A note on density estimation via the hyperbolic secant kernel estimator
    Bakouch, Hassan S.
    Elsamadony, Ola A.
    Chesneau, Christophe
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (08): : 2007 - 2019
  • [37] Kernel density estimation for dynamic scene modeling
    Mao, Yan-Fen
    Shi, Peng-Fei
    Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing, 2004, 19 (04): : 391 - 394
  • [38] Real-time fault detection using recursive density estimation
    Costa B.S.J.
    Angelov P.P.
    Guedes L.A.
    Costa, B.S.J. (bruno.costa@ifrn.edu.br), 1600, Springer Science and Business Media, LLC (25): : 428 - 437
  • [39] Simultaneous real-time estimation of atmospheric density and ballistic coefficient
    Wright, JR
    Woodburn, J
    Spaceflight Mechanics 2004, Vol 119, Pt 1-3, 2005, 119 : 1155 - 1183
  • [40] Architecture for Real-Time Nonparametric Probability Density Function Estimation
    Fahmy, Suhaib A.
    Mohan, A. R.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (05) : 910 - 920