D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [41] Analysis of a meshless method for the time fractional diffusion-wave equation
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Akbar Mohebbi
    Numerical Algorithms, 2016, 73 : 445 - 476
  • [42] Solution for a fractional diffusion-wave equation defined in a bounded domain
    Agrawal, OP
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 145 - 155
  • [43] A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation
    Shah, Farman Ali
    Kamran
    Khan, Zareen A.
    Azmi, Fatima
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2024, 9 (10): : 27122 - 27149
  • [44] A matrix D'Alembert formula for coupled wave initial value problems
    Jodar, L
    Goberna, D
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (09) : 1 - 15
  • [45] A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation
    Bhardwaj, Akanksha
    Kumar, Alpesh
    APPLIED NUMERICAL MATHEMATICS, 2021, 160 (160) : 146 - 165
  • [46] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [47] Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term
    Ding, Hengfei
    Li, Changpin
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [48] One Inverse Problem for the Diffusion-Wave Equation in Bounded Domain
    A. O. Lopushanskyi
    H. P. Lopushanska
    Ukrainian Mathematical Journal, 2014, 66 : 743 - 757
  • [49] A d'Alembert Formula for Hopf Hypersurfaces
    Ivey, Thomas A.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 293 - 309
  • [50] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305