D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [31] One Inverse Problem for the Diffusion-Wave Equation in Bounded Domain
    Lopushanskyi, A. O.
    Lopushanska, H. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (05) : 743 - 757
  • [32] The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative
    Voroshilov, A. A.
    Kilbas, A. A.
    DIFFERENTIAL EQUATIONS, 2006, 42 (05) : 638 - 649
  • [33] Spectral method for the fractional diffusion-wave equation with variable coefficients
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Liu, Haiyu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7827 - 7832
  • [34] A new spline technique for the time fractional diffusion-wave equation
    Singh, Suruchi
    Singh, Swarn
    Aggarwal, Anu
    METHODSX, 2023, 10
  • [35] Stabilization of Solutions to the Cauchy Problem for Fractional Diffusion-Wave Equation
    Pskhu A.V.
    Journal of Mathematical Sciences, 2020, 250 (5) : 800 - 810
  • [36] Solution of nonlinear fractional diffusion-wave equation by traingular functions
    Ebadian A.
    Fazli H.R.
    Khajehnasiri A.A.
    SeMA Journal, 2015, 72 (1) : 37 - 46
  • [37] Fractional in Time Diffusion-Wave Equation and its Numerical Approximation
    Delic, Aleksandra
    FILOMAT, 2016, 30 (05) : 1375 - 1385
  • [38] Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain
    Om P. Agrawal
    Nonlinear Dynamics, 2002, 29 : 145 - 155
  • [39] The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative
    A. A. Voroshilov
    A. A. Kilbas
    Differential Equations, 2006, 42 : 638 - 649
  • [40] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Ren, Jincheng
    Long, Xiaonian
    Mao, Shipeng
    Zhang, Jiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 917 - 935